扭转弹簧约束下简支碳纳米管的振动特性
作者:
作者单位:

1.武汉科技大学 冶金工业过程系统科学湖北省重点实验室;2.河北建材职业技术学院 基础部

中图分类号:

O353.1


Vibration of elastic restrained simply supported carbon nanotubes
Author:
Affiliation:

1.Hubei Key Laboratory of Process System Science for Metallurgical Industry, Wuhan University of Science and Technology;2.Hebei Building Materials Vocational and Technical College

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对两端扭转弹簧约束下简支单层碳纳米管(SWCNT),将非局部弹性理论引入经典欧拉-伯努利梁模型,应用哈密顿原理建立了其振动控制方程以及边界条件,并依靠微分变换法(DTM法)对此高阶偏微分方程进行求解。数值计算研究了扭转弹簧弹性系数、碳纳米管小尺度效应和粘弹性性质对该系统前四阶无量纲固有频率的影响。结论表明小尺度参数、管道粘弹性阻尼参数的增加将会降低系统的各阶固有频率,而且上述两类变化情况均是高阶模态的变化显著于低阶模态;而扭转约束弹性刚度的增加则会提升纳米管的固有频率,并且这一提升效果低阶模态显著于高阶模态。

    Abstract:

    This paper investigated the free vibration of simply supported single-walled carbon nanotubes (SWCNTs) with both ends restrained elastically. The material property of CNT was simulated by Kelvin-Voigt viscoelastic constitutive relation. Based upon nonlocal Euler-Bernoulli beam theory, the governing partial differential equations of motion and associated boundary conditions were derived by Hamilton's principle. Employed the differential transformation method (DTM) to solve the equation of motion, the influences of the nonlocal parameter, the viscoelastic CNT parameter and restraining elastic coefficient on the dynamic behaviors of the SWCNT were analyzed. It can be concluded that the nonlocal small-scale parameter and the viscoelastic CNT parameter make the SWCNT natural frequency decrease. More importantly, the results show that it will be a convenient and effective way to increase the natural frequency SWCNT system through additional elastic restraining with proper coefficient on two ends while their values are low.

    参考文献
    [1] Iijima S. Helical microtubes of graphite carbon[J] . Nature, 1991, 354(7): 56–58.
    [2] Soltani, P, Farshidianfar, A. Periodic solution for nonlinear vibration of a fluid-conveying carbon nanotube, based on the nonlocal continuum theory by energy balance method[J]. Applied Mathematical Modelling, 2012, 36 (8): 3712-3724.
    [3] 李明,周攀峰,郑慧明. 磁敏固支载流单壁碳纳米管在轴向磁场中的振动特性[J].应用力学学报,2017,34(4): 634-640. (Li Ming, Zhou Panfeng, Zheng Huiming. Vibration characteristics of magnetically sensitive clamped-clampedcarbon nanotubes conveying fIuid subjected to a longitudinal magnetic field[J]. Chinese Journal of Applied Mechanics, 2017, 34(4): 634-640.)
    [4] Poncharal P, Wang Z L, Ugarte D, et a1. Electrostatic deflections and electro-mechanical resonances of carbon nanotubos[J]. Science, 1999, 283(5407): 1513-1516.
    [5] Eringen A C. On differential equations of nonlocal elasticity and solution of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
    [6] Ansari R, Gholami R, Sahmani S, et al. Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment[J]. Acta Mechanica Solida Sinica, 2015, 28(6): 659-667.
    [7] Lee.H.L, Chang.W.J. Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium[J]. Physica E, 2009, 41(4):1003-1018.
    [8] 李明,周攀峰,郑慧明. 多场作用下输流单层碳纳米管的动力学特性[J]. 固体力学学报,2017, 38(5): 426-432. (Li Ming, Zhou Panfeng, Zheng Huiming. Dynamic Characteristics of Carbon Nanotubes Conveying Fluid in Multi-physics Field[J]. Chinese Journal of Solid Mechanics, 2017, 38(5): 426-432.)
    [9] 王忠民, 冯振宇, 赵凤群, 等. 弹性地基输流管道的耦合模态颤振分析[J]. 应用数学和力学,2000, 21 (10): 1060-1068. (Wang Zhongmin, Feng Zhenyu, Zhao Fengqun, et al. Analysis of Coupled-Mode Flutter of Pipes Conveying Fluid on the Elastic Foundation[J]. Applied Mathematics and Mechanics, 2000, 21(10): 1060-1068. )
    [10] Xu. M, Futaba. D. N, Yamada. T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from -1960C to 10000C[J]. Science, 2010, 330(6009): 1364-1368.
    [11] 齐欢欢. 输液管道颤振失稳的时滞控制[D].上海:同济大学,2009. (Qi Huanhuan. Delayed feedback control for flutter in the pipe conveying fluid[D]. Shanghai: Tongji University, 2009.)
    [12] Wang Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics [J]. Journal of Applied Physics, 2005, 98(12): 1-6.
    [13] Chen C. K, Ho S. H. Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform[J]. International Journal of Mechanical Science, 1999, 41(11): 1339-1356.
    [14] Hosseini, M, Sadeghi-Goughari. M, Atashipour. S. A, et al. Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model[J]. Archives of Mechanics, 2014, 66 (4): 217–224.
    [15] Yoon. J, Ru. C. Q, Mioduchowski. A. Flow-induced flutter instability of cantilever carbon nanotubes[J]. International Journal of Solids and Structure, 2006, 43(6): 3337–3349.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:610
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-01-10
  • 最后修改日期:2020-01-10
  • 录用日期:2020-01-28
文章二维码