滹沱河地下水超采区人工回灌的水-岩相互作用模拟
作者:
作者单位:

中国地质科学院水文地质环境地质研究所

基金项目:

中央级公益性科研院所基本科研项目(SK202003;YYWF201728),国家十三五重点研发计划课题(2016YFC0502601)。


Water-rock interaction simulation of artificial recharge in the groundwater over-exploited area of the Hutuo river basin
Author:
Affiliation:

1.The Institute of Hydrogeology and Environmental Geology, CAGS,;2.The Institute of Hydrogeology and Environmental Geology, CAGS

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    人工回灌条件下回灌水与地下水混合带的水-岩相互作用,是决定地下水水质演化和含水层发生化学堵塞的关键过程。为研究人工回灌对滹沱河地下水超采区水质演化的影响,以石家庄市人工回灌场地为例,利用石津灌渠水作为回灌水源,通过室内实验结合反向水文地球化学模拟揭示回灌层位地表水与地下水混合带的水-岩相互作用机理。结果显示:混合带水的TDS变化特征表现为先增大后缓慢降低,且地表水占比越大、含水介质粒径越细,则其变幅越大;混合带水中主要离子浓度变化特征受混合、碳酸平衡、溶解-沉淀、阳离子交换及硝化作用控制,其中K+、Ca2+、SO42-浓度主要受溶解-沉淀作用控制,Na+、Cl-、HCO3-、NO3-浓度主要受混合作用控制,Mg2+浓度主要受阳离子交换作用控制;水-岩相互作用过程中溶解的矿物有石膏、钠长石、钾长石及盐岩,析出的矿物有方解石、钙蒙脱石及石英,且在地表水占比越大、含水介质粒径越细的层位,方解石的沉淀量越大,表明在粒径较细的回灌层位存在碳酸岩盐的化学堵塞风险。研究结果可为安全高效地开展地下水人工回灌工程提供科学依据。

    Abstract:

    The water-rock interaction in the recharge water and groundwater mixed zone of aquifer under artificial recharge is the key process that determines the evolution of groundwater quality and leads to the chemical clogging of aquifer. To study the effect of artificial recharge on the groundwater quality evolution in the groundwater over-exploited area of the Hutuo river basin, took the groundwater artificial recharge site in Shijiazhuang as an example , the Shijin irrigation canal water were used as the recharge water , the laboratory experiments and reverse hydrogeochemical simulation were used to reveal the mechanism of water-rock interaction of surface water and groundwater mixed zone in the aquifer. The results showed that the evolution characteristics of TDS in the mixed zone was firstly increasing and then slowly decreasing, if the proportion of surface water mixed with water was larger and the particle size of medium was smaller, the variation amplitude of TDS is larger. Mixing action, carbonic acid balance, dissolution-precipitation and nitrification controlled the change of main ion concentration, whereas the concentration of K+, Ca2+and SO42- were mainly controlled by solution-precipitation, the concentration of Na+, Cl-, HCO3-, NO3- is mainly controlled by mixing, and the concentration of Mg2+ is mainly controlled by cation exchange. In the water-rock reaction, the dissolved minerals include anhydrite albite, K-feldspar and halite, whereas the precipitated minerals include calcite, calcium montmorillonite and quartz. Moreover, in the larger the proportion of surface water, the finer the particle size of medium, and the more the calcite precipitation, indicated that the risk of carbonate chemical clogging is high in the aquifer with fine particle size, as the surface water was the recharge source. The results can provide scientific basis for the safe and efficient artificial recharge engineering.

    参考文献
    [1] 田夏,李亚松,费宇红,等.滹沱河超采区地下水硫酸盐来源识别及迁移转化[J].科学技术与工程,2020,20(07):2583-2589.
    [2] Zeng C F , Zheng G , Xue X L , et al. Combined recharge: A method to prevent ground settlement induced by redevelopment of recharge wells[J]. Journal of Hydrology, 2019, 568:1-11.
    [3] Hussain F , Hussain R , Wu R S , et al. Rainwater Harvesting Potential and Utilization for Artificial Recharge of Groundwater Using Recharge Wells[J]. Processes, 2019, 7(9):623.
    [4] Zhang, D. S., Y. Yang, B. H. Li et al. Study on the Influence of Multi-Source Recharge on Groundwater Environment[J]. Environmental Engineering and Management Journal 2019,18(6): 1367-1378.
    [5] Li, Congzhou, Li, Binghua, Bi, Erping. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: A case study in north China[J]. Science of the Total Environment, 2019, 668(JUN.10):1030-1037.
    [6] 李贺强,邢国平,王超.雨水回灌对深层承压含水层水质影响的模拟研究[J].水土保持通报,2015,35(01):139-142
    [7] Hashemi H , Berndtsson R , Persson M . Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran[J]. Hydrological ences journal, 2015, 60(1-2):336-350.
    [8] 郑凡东,刘立才,杨牧骑,等.南水北调水源北京西郊回灌的水岩相互作用模拟[J]. 水文地质工程地质, 2012(6):22-28.
    [9] Shi X , Jiang S , Xu H , et al. The effects of artificial recharge of groundwater on controlling land subsidence and its influence on groundwater quality and aquifer energy storage in Shanghai, China[J]. Environmental Earth Sciences v, 2016, 75(3):195.1-195.18.
    [10] 苏小四, 谷小溪, 孟婧莹, 等. 人工回灌条件下多组分溶质的反应迁移模拟[J]. 吉林大学学报(地球科学版), 2012, 42(2):485-491.
    [11] Pavelic P , Dillon P J , Barry K E , et al. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer[J]. Journal of Hydrology, 2007, 334(1-2):1-16.
    [12] Vanderzalm J L, Page D W, Barry K E, et al. A comparison of the geochemical response to different managed aquifer recharge operations for injection of urban stormwater in a carbonate aquifer[J]. Applied Geochemistry, 2010, 25(9):1350-1360.
    [13] Medina D A B, Berg G A V D, Breukelen B M V, et al. Colmata??o com hidróxidos de ferro de furos de abastecimento público que recebem recarga artificial: observa??es hidrogeológicas e hidroquímicas na vizinhan?a e no interior do furo[J]. Hydrogeology Journal, 2013, 21(7):1393-1412.
    [14] 刘立才,郑凡东,李炳华,等.南水北调水源在密怀顺水源地回灌的地下水水质变化试验[J].水文地质工程地质,2015,42(04):18-22+55.
    [15] 刘鹏飞,刘少玉,王哲,等.滹沱河冲洪积扇浅部回灌层井灌动态分析及回渗能力探究[J]. 科学技术与工程, 2016, 16(30):27-31.
    [16] Magaritz M, Nadler A, Koyumdjisky H, et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone[J]. Water Resources Research, 1981, 17(3):602–608.
    [17] Lakshmanan E, Kannan R, Senthil Kumar M. Major Ion Chemistry and Identification of Hydrogeochemical Processes of Ground Water in a Part of Kancheeepuram District Tamil Nadu of Indi[J].Environmental Geoscicences, 2003, 10(4): 157-166.
    [18] Kaur, L., M. S. Rishi, S. Sharma, et al. Evaluation of aqueous geochemistry of fluoride enriched groundwater: A case study of the Patan district, Gujarat, Western India[J]. Water Science, 2017, 31(2): 215-229.
    [19] Salcedo Sánchez, Edith R, Garrido Hoyos, et al. Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico)[J]. Journal of Geochemical Exploration, 2017(181):219-235.
    [20] 闫雅妮,马腾,张俊文,等.地下水与地表水相互作用下硝态氮的迁移转化实验[J].地球科学,2017,42(05):783-792.
    [21] Jeong H Y , Jun S C , Cheon J Y , et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications[J]. Geosciences Journal, 2018.22(7): 667–679.
    [22] Du X , Wang Z , Ye X . Potential Clogging and Dissolution Effects During Artificial Recharge of Groundwater Using Potable Water[J]. Water Resources Management, 2013, 27(10):3573-3583.
    [23] Lu Y , Du X , Yang Y , et al. Compatibility Assessment of Recharge Water with Native Groundwater Using Reactive Hydrogeochemical Modeling in Pinggu, Beijing[J]. Clean Soil Air Water, 2014, 42(6):722-730.
    [24] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展(二)[J]. 水文地质工程地质, 2001, 28(4):26-31.
    [25] 李军,张翠云,蓝芙宁,邹胜章,周长松.区域地下水不同深度微生物群落结构特征[J].中国环境科学,2019,39(06):2614-2623.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:330
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-05-20
  • 最后修改日期:2020-09-01
  • 录用日期:2020-09-02
文章二维码