低复杂度的大规模 MIMO上行链路软输出信号检测
作者:
作者单位:

兰州交通大学电子与信息工程学院

基金项目:

国家自然科学基金资助项目(61741113);甘肃省高等学校创新能力提升项目(2019B-052)


A Low-complexity Soft-Output Signal Detection for Uplink Large-scale MIMO
Author:
Affiliation:

School of Electronic and Information Engineering of Lanzhou Jiaotong University

Fund Project:

Gansu Provincial Institutions of Higher Learning Innovation Ability Promotion Project (2019B-052) and National Science Foundation of China with grant No.61741113

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于信道矩阵的维度高以及接收信号复杂这种情况,提出了一种适用于大规模 MIMO系统上行链路信号检测的混合迭代算法,即自适应阻尼雅克比(Damped Jacobi,DJ)算法和共轭梯度(Conjugate Gradient,CG)算法相结合。首先利用共轭梯度算法为自适应阻尼雅克比迭代算法提供有效的搜索方向,随后提出切比雪夫方法消除松弛参数对信号检测的影响,降低算法复杂度的同时,加快收敛速度,最后,通过利用信道编译码中的比特似然比近似求解软信息。仿真结果表明,混合迭代算法在少量迭代次数下快速收敛并近似达到最佳MMSE检测性能,且算法复杂度远低于MMSE算法。

    Abstract:

    Based on the high dimension of the channel matrix and the complexity of the received signals, a hybrid iterative algorithm signal detection on uplink for large-scale MIMO systems is proposed, which combines adaptive damped Jacobi (DJ) algorithm and conjugate gradient (CG) algorithm. Firstly, conjugate gradient algorithm is used to provide effective search direction for adaptive damped Jacobian iterative algorithm. Then, Chebyshev method is proposed to eliminate the influence of relaxation parameters on signal detection to reduce the complexity of the algorithm and accelerate the convergence speed. Finally, the soft information is approximately solved by using the bit likelihood ratio in channel coding and decoding. The simulation results show that the hybrid iterative algorithm converges quickly and approximately achieves the best MMSE detection performance under a small number of iterations, and the algorithm complexity is far lower than that of MMSE algorithm.

    参考文献
    [1] MARZETTA T L. How much training is required for multiuser MIMO? [C]//IEEE 40th Asilomar Conference on Signals, Systems and Computers (ACSSC).2006:359-363.
    [2] QIAN M, WANG Y, ZHOU Y, et al. A super base station based centralized network architecture for 5G mobile communication systems [J]. Digital Communications & Networks,2015,54(2) :152-159.
    [3] SRINIGDHI N, DATTA T, CHOCKALINGAM A, et al. Layered Tabu search algorithm for large-MIMO detection and a lower bound on ML performance[J]. IEEE Transactions on Communications, 2010, 59(11) :1-5.
    [4] RUSEK F, PERSSON D, LAU B, et al. Sealing up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013,30(1): 40-60.
    [5] 王雷.大规模MIMO中基于低复杂度雅克比预编码算法及实现[J].计算机应用与软件,2017,34(10):294-297.
    [6] Wang Lei. Low complexity Jacobi precoding algorithm and its implementation in large scale MIMO [J]. Computer applications and software, 2017,34 (10): 294-297.
    [7] [6] 周冬,曹海燕,许方敏,方昕,王秀敏.大规模MIMO系统中基于权重高斯赛德低复杂度ZF预编码方案[J].电信科学,2019,35(03):69-75.Zhou Dong, Cao Haiyan, Xu Fangmin, Fang Xin, et al. Low complexity ZF precoding scheme based on weight Gaussian side in large scale MIMO system [J]. Telecommunication science, 2019,35 (03): 69-75.
    [8] [7] 许耀华,尤扬扬,胡梦钰等.基于SAOR的Massive MIMO系统信号检测算法[J].数据采集与处理,2020,35(01):139-146.
    [9] Xu Yaohua, You Yangyang, Hu Mengyu, et al. Signal detection algorithm for massive MIMO system based on SAOR [J]. Data acquisition and processing, 2020,35 (01): 139-146.
    [10] [8] 胡哲,景小荣.基于Homotopy算法的低复杂度多用户大规模MIMO信号检测方法[J].重庆邮电大学学报(自然科学版),2019,31(06):792-798. Hu Zhe, Jing Xiaorong. Low complexity multi-user large-scale MIMO signal detection method based on homotopy algorithm [J]. Journal of Chongqing University of Posts and Telecommunications (NATURAL SCIENCE EDITION), 2019,31 (06): 792-798.
    [11] [9] ZHANG Y P, WU Z Z, LI C G, et al. Expectation propagation detection with Neumann-series approximation for massive MIMO[C]//IEEE International Workshop on Signal Procession System. 2018:59-64.
    [12] [10] HU Y, WANG Z, GAO L X.et al. Low-complexity signal detection using CG method for uplink large-scale MIMO systems[C]//IEEE International Conference on Communication Systems, November 19-24,2014, Macau, China. New Jersey: IEEE Press,2015:477-481.
    [13] [11] HAGEMAN L A. Iterative solution of large linear systems[M]. Manhattan: Academic Press, 1971: 9-24.
    [14] [12] 周围,张维,唐俊等.大规模MIMO系统中的并行共轭梯度软输出信号检测算法[J].南京邮电大学学报(自然科学版),2019,39(05):1-6.
    [15] Zhou Wei, Zhang Wei, Tang Jun, et al. Parallel conjugate gradient soft output signal detection algorithm for large scale MIMO systems [J]. Journal of Nanjing University of Posts and Telecommunications (NATURAL SCIENCE EDITION), 2019,39 (05): 1-6.
    [16] [13] 郑沛聪.基于深度学习的MIMO信号检测算法优化研究[D].哈尔滨工业大学,2019.
    [17] Zheng Peicong. Research on Optimization of MIMO signal detection algorithm based on deep learning [D]. Harbin: Harbin Institute of technology, 2019.
    [18] [14] 高贵利. 基于机器学习的Massive MIMO检测技术研究[D].北京邮电大学,2019.
    [19] Gao Guili. Research on massive MIMO detection technology based on machine learning [D]. Beijing: Beijing University of Posts and telecommunications, 2019.
    [20] [15] 申滨,赵书锋,黄龙杨.基于Jacobi迭代的大规模MIMO系统低复杂度软检测算法[J].北京邮电大学学报,2017,40(05):55-60.
    [21] Shen bin, Zhao Shufeng, Huang Longyang. Low complexity soft detection algorithm for large scale MIMO systems based on Jacobi iteration [J]. Journal of Beijing University of Posts and telecommunications, 2017,40 (05): 55-60.
    [22] [16] Larsson E, Edfors O. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine,2013.52(2):186-195.
    [23] [17] 陈喜凤. 基于LLR的低复杂度MASSIVE MIMO系统信号检测算法[D].哈尔滨工业大学,2017.
    [24] Chen Xifeng. LLR based signal detection algorithm for low complexity massive MIMO systems [D]. Harbin: Harbin Institute of technology, 2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:430
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-07-13
  • 最后修改日期:2020-08-09
  • 录用日期:2021-02-08
文章二维码