资源受限条件下的DIDS任务调度优化方法
DOI:
CSTR:
作者:
作者单位:

西安建筑科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on MDP-Based DIDS Scheduling Problem under Resource Constraints
Author:
Affiliation:

1.Xi'2.'3.an University of Architecture and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在节点性能有限的边缘计算环境下进行分布式入侵检测系统(DIDS)的任务分配,是一种典型的资源受限项目调度问题。针对该问题,提出了基于马尔科夫决策过程(MDP)的DIDS任务调度方案。首先对DIDS检测引擎性能和数据包产生的负载进行科学评估;然后构建模型的状态空间和动作空间,最后通过建立状态-行为价值函数确定保持DIDS低负载状态的最优策略。根据该策略,调度器可以为不同性能等级的检测引擎和不同负载等级的数据包之间进行调度匹配。此外,为了解决偶发性流量激增造成的丢包率上升的问题,提出低负载与丢包率这两个矛盾指标的平衡方法。实验结果表明所提出的方案可使DIDS在网络变化中动态调节调度策略,保持系统整体的低负载,而安全指标与其他算法相比没有明显降低。

    Abstract:

    The task assignment of distributed intrusion detection system (DIDS) in the edge computing environment with limited node performance is a typical resource-constrained project scheduling problem (RCPSP). To solve this problem, a task scheduling scheme based on Markov Decision Process (MDP) is proposed. First, the performance of the DIDS detection engines and the load generated by the packets are scientifically evaluated; then the state space and action space of the model are constructed. Finally, a state-behavior value function is established to determine the optimal strategy for maintaining a low-load state of DIDS. According to this strategy, the scheduler can perform scheduling matching between detection engines of different performance levels and data packets of different load levels. In addition, in order to solve the problem of increased packet loss rate caused by sporadic traffic surges, a method to balance the two contradictory indicators of low load and packet loss rate is proposed. Experimental results show that the proposed scheme enables DIDS to dynamically adjust the scheduling strategy during network changes, maintain the overall low load of the system, while security indicators are not significantly reduced compared with other algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-23
  • 最后修改日期:2020-11-27
  • 录用日期:2020-11-30
  • 在线发布日期:
  • 出版日期:
文章二维码