煤矿钻机自动防卡钻电液控制系统研究
作者单位:

1.山东科技大学;2.枣庄职业学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on electro-hydraulic control system for automatic anti-sticking of coal mine drilling rig
Author:
Affiliation:

1.Shandong University Of Science And Technology;2.Zaozhuang Technician college

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    由于松软煤层地质条件复杂多变,钻机在钻孔施工时,经常发生卡钻事故,这极大降低了工作效率,并严重威胁到工人人身安全。为解决以上问题,分析了引起卡钻的各影响因素,采用钻机回转压力表示卡钻状态,并设置回转压力卡钻阈值。根据钻机工作原理与卡钻机理,建立基于负载流量独立分配系统(LUDV)的防卡钻液压回路;采用PID与信号选择器建立自动防卡钻控制器,并采用人群搜索算法(SOA)整定PID参数。采用AMESim进行系统仿真试验,结果表明:回转压力达到200bar时,钻机自动回退;达到220bar时,钻机回转压力维持稳定,保持较大的回转动力克服外负载阻力,避免发生卡钻事故,验证了自动防卡钻电液控制系统的有效性。

    Abstract:

    Due to the complex and changeable geological conditions of the soft coal seam, sticking accidents often occur during the drilling construction of the drilling rig, which greatly reduces the work efficiency and seriously threatens the personal safety of workers. In order to solve the above problems, the influencing factors of sticking are analyzed, the rotary pressure of drilling rig is used to describe the state of sticking, and the threshold of slewing pressure sticking is set. According to the working principle of drilling rig and sticking mechanism, the anti-sticking hydraulic circuit based on the Load Independent Flow Distribution System(LUDV) is established, the automatic anti-sticking controller is established by PID and signal selector, and the Seeker Optimization Algorithm(SOA) is used to adjust PID parameters. The system simulation test is carried out by using AMESim, and the results show that when the rotary pressure reaches 200bar, the drilling rig automatically pulls back; when the rotary pressure reaches 220bar, the drilling rig slewing pressure remains stable and a large slewing power is maintained to overcome the external load resistance and avoid sticking accidents, which verifies the effectiveness of the automatic anti-drilling electro-hydraulic control system.

    参考文献
    [1] 吉辰, 蹇开林, 郝忠. 煤与瓦斯突出过程中煤体破坏的有限元模拟[J]. 重庆大学学报, 2020, v.43(04):89-97.
    [2] [3]杜军军, 刘联涛, 崔金榜,等. 煤层气井不同类型煤粉的静态沉降规律[J]. 煤炭学报, 2018, 43(S1):209-215.
    [3] 谢钟声, 张圣彪. Simba-261型潜孔钻机的使用与改进[J]. 矿山机械, 2008(16):105-106.
    [4] 左求明. CD—360潜孔钻机用钻杆的改进[J]. 凿岩机械气动工具, 2001,(02):40-42.
    [5] 孙永兴,范生林,乔李华.页岩气水平井卡钻主要原因及预防对策[J].天然气工业,2018,38(12):107-113.
    [6] 李美香. 潜孔钻机凿岩过程自动防卡液压控制方案研究[D].中南大学,2018.
    [7] 谢春来, 王照阳, 仇越,等. 伊拉克哈法亚油田高压盐膏层安全钻井技术[J]. 吉林大学学报(地球科学版), 2020, 050(002):589-597.
    [8] 王明华, 姜峰. SPZ-120型水平钻机排渣控制和防卡钻技术应用[J]. 矿业工程, 2012, 10(1):44-46.
    [9] 李宏,郝光生.高突矿井松软煤层瓦斯抽采钻孔的深孔钻进技术[J].黑龙江科技大学学报,2019,29(06):642-647.
    [10] 沈平, 段小刚. 模糊PID双层参数整定及其在固化炉中的应用[J]. 重庆大学学报, 2018, 41(001):78-87.
    [11] 黄国勤, 罗莎祁, 胡博,等. 风电系统的混合式液压机械无级变速技术[J]. 华南理工大学学报(自然科学版), 2019, 047(001):95-102.
    [12] Hebda-Sobkowicz J , Zimroz R , Agnieszka Wyomańska. Selection of the Informative Frequency Band in a Bearing Fault Diagnosis in the Presence of Non-Gaussian Noise—Comparison of Recently Developed Methods[J]. Applied ences, 2020, 10(8):36-57.
    [13] 陈叙, 陈奎生. 基于AMESim的液压挖掘机LUDV系统仿真分析[J]. 机床与液压, 2019,47(14):54-57+69.
    [14] Bo Yang,Jingbo Wang,Lei Yu,Hongchun Shu,Tao Yu,Xiaoshun Zhang,Wei Yao,Liming Sun. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production,2020(265):52-72.
    [15] 封京梅,刘三阳.基于单纯形法进行局部优化的人群搜索算法求解绝对值方程[J].吉林大学学报(理学版),2019,57(05):1075-1080.
    [16] Hwang H , Nam K . Design of a Robust Rack Position Controller Based on 1-Dimensional AMESim Model of a Steer-by-Wire System[J]. International Journal of Automotive Technology, 2020, 21(2):419-425.
    [17] 郭亚旭. 一种液压泵系统压力控制方法:中国,CN102927088A[P].2013.2.13.
    [18] 程敏,于今,丁孺琦,蔡乐平.基于流量前馈与压力反馈复合控制的电液负载敏感系统[J].机械工程学报,2018,54(20):262-270.
    [19] 屈盛官, 肖传伟, 方波,等. 基于AMESim的负载敏感泵压力-流量特性影响因素探究[J]. 液压与气动, 2019(05):64-71.
    [20] Y. Dai, X. Zhu, L. S. Chen. A Mechanical-Hydraulic Virtual Prototype Co-Simulation Model for a Seabed Remotely Operated Vehicle[J]. International Journal of Simulation Modelling, 2016(15):532-541.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:644
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-10-14
  • 最后修改日期:2020-11-06
  • 录用日期:2020-11-16
文章二维码