MEC-D2D通信系统中基于博弈论的安全路由选择算法
作者:
作者单位:

1.国网安徽省电力有限公司信息通信分公司;2.重庆大学微电子与通信工程学院;3.安徽继远软件有限公司

基金项目:

重庆市基础科学与前沿技术研究专项重点项目


Secure Routing Selection Algorithm Based on Game Theory in MEC-D2D Communication Systems
Author:
Affiliation:

1.Information and Communication Branch, State Grid Anhui Electric Power Co., Ltd;2.College of Microelectronics and Communication Engineering, Chongqing University;3.Anhui Jiyuan Software Co., Ltd

Fund Project:

Special Key Project of Chongqing Basic Science and Frontier Technology Research

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对设备到设备(device-to-device, D2D)通信和移动边缘计算(mobile edge computing, MEC)结合通信系统中存在意图传播恶意软件的恶意节点,提出一种基于博弈论的安全路由选择算法。该算法假设D2D通信中的节点都配备有反恶意软件控件,在考虑检测成本和路由安全性的基础上,利用对恶意软件的联合检测能力,采用博弈论选择安全路由,实现数据传输的安全性。仿真结果表明,增加可用路由搜索跳数,可以提高安全路由对恶意软件的检测能力和路由的QoS,兼顾数据包传输的安全性和QoS。

    Abstract:

    This paper proposes a secure routing algorithm based on game theory to optimize routing strategies for the problem of malicious nodes that intend to spread malware in a communication system that combines device-to-device and mobile edge computing, and verifies the feasibility of the algorithm. The algorithm assumes that the nodes in the device-to-device communication system are equipped with anti-malware controls, and select the safe routes using game theory based on the detection cost, routing QoS and the joint detection capability of the malware to taking into account the security of packet transmission and the QoS. Simulation results show that the designed secure routing algorithm can take into account the security and QoS of data packet transmission.

    参考文献
    [1] 钱志鸿, 王雪. 面向5G通信网的D2D技术综述[J].通信学报, 2016, 37(7): 1-14.
    [2] QIAN zhihong, Wang X. A review of D2D technology for 5G Communication Networks [J]. Journal on Communications, 2016, 37(7): 1-14.
    [3] [2] Haus M, Waqas M, Ding A Y, et al. Security and Privacy in Device-to-Device (D2D) Communication: A Review[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1054-1079.
    [4] [3] Jameel F, Hamid Z, Jabeen F, et al. A Survey of Device-to-Device Communications: Research Issues and Challenges[J].IEEE Communications Surveys & Tutorials, 2018, 20(3): 2133-2168.
    [5] [4] Felt A P, Finifter M, Chin E, et al. A survey of mobile malware in the wild[C]. Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, 2011: 3-14.
    [6] [5] Chai R, Lin J, Chen M, et al. Task Execution Cost Minimization-Based Joint Computation Offloading and Resource Allocation for Cellular D2D MEC Systems[J]. IEEE Systems Journal, 2019, 13(4): 4110-4121.
    [7] [6] Ateya A A, Muthanna A, Koucheryavy A. 5G framework based on multi-level edge computing with D2D enabled communication[C]. 2018 20th International Conference on Advanced Communication Technology (ICACT), 2018: 507-512.
    [8] [7] Wang R, Yan J, Wu D, et al. Knowledge-Centric Edge Computing Based on Virtualized D2D Communication Systems[J]. IEEE Communications Magazine, 2018, 56(5): 32-38.
    [9] [8] Panaousis E, Karapistoli E, Elsemary H, et al. Game theoretic path selection to support security in device-to-device communications[J]. Ad Hoc Networks, 2017, 56: 28-42.
    [10] [9] Panaousis E, Alpcan T, Fereidooni H, et al. Secure message delivery games for device-to-device communications[J]. Decision and Game Theory for Security, Lecture Notes in Computer Science, 2014, 8840: 195–215.
    [11] [10] Nash J, Equilibrium points in n-person games[J]. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(1): 48-49.
    [12] [11] Alpcan T, Basar T. Network security: A decision and Game-Theoretic approach[M]. Cambridge: Cambridge University Press, 2010.
    [13] [12] Basar T, Olsder G J. Dynamic Noncooperative Game Theory [M]. New York: Academic Press, 1995.
    [14] [13] Neumann v, morgenstern j, kuhn o, et al. Theory of Games and Economic Behavior[M]. 60th Anniversary Commemorative Edition, Princeton: Princeton University Press, 2019.
    [15] [14] Damopoulos D, Kambourakis G., Portokalidis G. The best of both worlds: a framework for the synergistic operation of host and cloud anomaly-based ids for smartphones[C]. Proceedings of the 7th European Workshop on System Security, 2014: 1-6.
    [16] [15] Sun M, Zheng M, Jiang X. Design and Implementation of an Android Host-based Intrusion Prevention System[C]. Proceedings of the 30th Annual Computer Security Applications Conference, 2014: 226-235.
    [17] [16] Saracino A, Sgandurra D, Dini G, et al. MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(1): 83-97.
    [18] [17] Damopoulos D, Menesidou S, Kambourakis G, et al. Evaluation of anomaly‐based IDS for mobile devices using machine learning classifiers[J]. Security and Communication Networks, 2011: 3-14.
    [19] [18] Amopoulos D, Kambourakis G, Gritzalis S, et al. Exposing mobile malware from the inside (or what is your mobile app really doing?)[J]. Peer-to-peer Networking and Applications, 2012: 687-697.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:576
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-10-24
  • 最后修改日期:2020-12-15
  • 录用日期:2020-12-16
文章二维码