考虑扰动的交通子区迭代学习边界控制方法
作者:
作者单位:

太原理工大学电气与动力工程学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),中国博士后科学基金,山西省应用基础研究项目


Iterative learning perimeter control method for traffic sub-region considering disturbances
Author:
Affiliation:

College of Electrical and Power Engineering, Taiyuan University of Technology

Fund Project:

China Postdoctoral Science Foundation,Applied Basic Research Program of Shanxi Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对城市边界控制问题,提出了一种考虑扰动的交通子区迭代学习边界控制方法。首先,在路网车辆平衡方程中引入扰动项建立离散的宏观交通流模型;其次,基于宏观交通流的重复性特征,设计了边界交叉口的迭代学习控制策略,并证明了在有界的扰动作用下系统的跟踪误差收敛到一个界内;最后,以实际路网为例进行对比仿真实验,结果表明考虑扰动的迭代学习边界控制方法能够有效抑制不同程度的干扰对路网性能的影响,提高路网的交通状况。

    Abstract:

    Aiming at the problem of urban perimeter control, an iterative learning perimeter control method for traffic sub-region considering disturbances is proposed.Firstly, a discrete macroscopic traffic model is established by introducing disturbance term into the vehicle balance equation of road network.Secondly, based on the repeatability of macroscopic traffic flow, the iterative learning control strategy of boundary intersections is designed, and the tracking error of the system is proved to converge to a boundary under the action of bounded disturbance.Finally, taking the actual road network as an example, the simulation results show that the iterative learning perimeter control method considering disturbances can effectively restrain the influence of different degrees of disturbance on the road network performance and improve the traffic condition of the road network.

    参考文献
    [1] GODFREY J W. The mechanism of a road network[J]. Traffic Engineering & Control, 1969, 11(7):323-327.
    [2] GEROLIMINIS N, DAGANZO C F. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings[J]. Transportation Research Part B: Methodological, 2008, 42(9): 759-770.
    [3] DAGANZO C F, GEROLIMINIS N. An analytical approximation for the macroscopic fundamental diagram of urban traffic[J]. Transportation Research Part B: Methodological, 2008, 42(9): 771-781.
    [4] 丁恒, 郑小燕, 张雨, 等.宏观交通网络拥堵区边界最优控制[J].中国公路学报, 2017, 30(1): 111-120.
    [5] DING Heng, ZHENG Xiao-yan, ZHANG Yu, et al.Optimal control for traffic congested area boundary in macroscopic traffic network[J]. China Journal of Highway and Transport, 2017, 30(1):111-120. (in Chinese)
    [6] [5] 张卫华, 陈森, 丁恒.考虑边界交叉口交通拥堵的反馈阀门控制[J].控制理论与应用, 2019, 36(2): 241-248.
    [7] ZHANG Wei-hua, CHEN Sen, DING Heng. Feedback gating control considering the congestion at the perimeter intersection[J]. Control Theory and Application, 2019, 36(2): 241-248. (in Chinese)
    [8] [6] DING H, ZHANG Y, ZHENG X Y, et al. Hybrid perimeter control for two-region urban cities with different states[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018,26(6): 2049-2062.
    [9] [7] HADDAD J, GEROLIMINIS N. On the stability of traffic perimeter control in two-region urban cities[J]. Transportation Research Part B: Methodological,2012,46(9):1159-1176.
    [10] [8] ZHU W X, LI S. Study on discrete boundary-feedback-control strategy for rraffic flow based on macroscopic fundamental diagram[J]. Physica A: Statistical Mechanics and Its Applications, 2019,523(6):1237-1247.
    [11] [9] Aalipour A , Kebriaei H , Ramezani M . Analytical optimal solution of perimeter traffic flow control based on MFD dynamics: A Pontryagin''s Maximum Principle Approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2018:1-11.
    [12] [10] HOU Z S, XU J X, YAN J W, et al. An iterative learning approach for density control of freeway traffic flow via ramp metering[J]. Transportation Research Part C-Emerging Technologies, 2008, 16(1): 71-97.
    [13] [11] ARIMOTO S, KAWAMURA S, MIYAZAKI F. Bettering operation of robots by learning[J]. Journal of Robotic Systems, 1984, 1(2):123-140.
    [14] [12] HOU Z S, XU J X. Freeway traffic density control using iterative learning control approach[C] //IEEE. The IEEE 6th International Conference on Intelligent Transportation Systems. Shanghai:IEEE Press; 2003: 1081-1086.
    [15] [13] 侯忠生, 晏静文.带有迭代学习前馈的快速路无模型自适应入口匝道控制[J].自动化学报, 2009, 35(5): 588-595.
    [16] HOU Z S, YAN J W. Model free adaptive control based freeway ramp metering with feedforward iterative learning controller[J]. Acta Automatica Sinica, 2009, 35(5): 588-595. (in Chinese)
    [17] [14] HOU Z S, XU X, YAN J W, et al. A complementary modularized ramp metering approach based on iterative learning control and ALINEA[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1305-1318.
    [18] [15] YAN F, TIAN F L, SHI Z K, et al. Iterative learning approach for traffic signal control of urban road networks[J]. IET Control Theory and Applications, 2017, 11(4): 466-475.
    [19] [16] YAN F, TIAN F L, SHI Z K. Effects of iterative learning based signal control strategies on macroscopic fundamental diagrams of urban road networks[J]. International Journal of Modern Physics C, 2016, 27(4): 1650045.
    [20] [17] 金尚泰, 丁莹, 殷辰堃, 等.城市交通区域的迭代学习边界控制[J].控制与决策, 2018, 33(4): 633-638.
    [21] JIN Shang-Tai, DING Ying, YIN Chen-Kun, et al. Iterative learning perimeter control for urban traffic region[J]. Control and Decision, 2018, 33(4): 633-638. (in Chinese)
    [22] [18] 池荣虎, 侯忠生, 金尚泰, 等.快速路交通密度的自抗扰控制器设计及不同扰动情况下的性能评价[J].控制理论与应用, 2014, 1(4): 525-530.
    [23] CHI Rong-hu, HOU Zhong-sheng, JIN Shang-tai, et al. Active disturbance rejection controller for freeway traffic density and performance assessment with different types of disturbances[J]. Control Theory & Applications, 2014,31(4): 525-530. (in Chinese)
    [24] [19] ASLAN M, SEIPEL S, MESGARI M S, et al. Traffic signal optimization through discrete and continuous reinforcement learning with robustness analysis in downtown Tehran[J]. Advanced engineering informatics, 2018, 38(10):639-655.
    [25] [20] WAN Y, Cao J D, HUANG W, et al. Perimeter control of multiregion urban traffic networks with time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2020,50(8): 2795-2803.
    [26] [21] HADDAD J, Zheng Z F. Adaptive perimeter control for multi-region accumulation based models with state delays[J]. Transportation Research Part B: Method-ological,2018,(137):133-153.
    [27] [22] 严求真, 孙明轩, 蔡建平.迭代学习控制的参考信号初始修正方法[J].自动化学报, 2017, 43(8): 1470-1477.
    [28] YAN Qiu-zhen, SUN Ming-xuan, CAI Jian-ping. Reference-signal rectifying method of iterative learning control[J]. Acta Automatica Sinica, 2017, 43(8): 1470-1477. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:663
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-12-04
  • 最后修改日期:2021-03-14
  • 录用日期:2021-03-29
文章二维码