基于量子安全的电力信息系统安全增强方法研究
作者:
作者单位:

国家电网有限公司东北分部

基金项目:

国家电网公司科技项目,国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on the Security Enhancement for Power Information System Based on Quantum Security
Author:
Affiliation:

1.Northeast 2.Branch 3.of 4.State 5.Grid 6.Corporation 7.China

Fund Project:

Technology Program on State Grid Corporation of China, National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    电力系统是国家发展的重要基石,电力信息系统的安全性必须得到保障。现有的电力信息系统的安全方法主要基于RSA等加密算法,面临互联网算力提升和量子计算机的威胁。本文根据电力系统对信息安全的迫切需求,以及量子保密通信技术在信息安全领域中的无条件安全性,探索量子保密通信技术在电力信息系统中的应用。具体地,通过对作为互联网信息技术基础的标准SSL协议过程及其安全要素的详细解析,本文设计了同互联网基础相容的一种量子安全增强方法——利用预置量子随机数(基于量子随机数发生设备、量子密钥分发网络)进行的随机数源强化,并在开源OPENSSL VPN平台上进行相应的实验验证。实验结果表明,本文提出的利用量子随机数源进行量子化改造的方案能够实现系统安全的根本性改善,同时不显著增加系统复杂度或系统开销,因此能够对电力信息系统安全实现增强。

    Abstract:

    Power system is the basis of the development of states. The security of the power information system must be guaranteed. In the power information system, most of existing security methods are based on encryption algorithms like RSA algorithm, up against the threaten of increasing computing power of Internet and quantum computer. According to the urgent demand for information security of power system and the unconditional security of quantum security communication, this paper explores the application of quantum security communication in power information system. Specifically, By detailed analysis of the procedure and security factors of the standard SSL protocol, this paper designed a security enhancement method which is compatible with the existing Internet protocol basis. The proposed method enhanced the source of random number by preset quantum random number (based on quantum random number generator or quantum key distribution network). Implemented on the OPENSSL VPN evaluation platform, experiments showed that the proposed security enhancement method could improve the security level of power information systems without tremendous increase in system complexity or cost.

    参考文献
    [1] 李文武, 游文霞, 王先培. 电力系统信息安全研究综述[J]. 电力系统保护与控制, 2011, 39(10):148-155.
    [2] LI Wenwu, YOU Wenxia, WANG Xianpei. Survey of cyber security research in power system[J]. Power System Protection and Control, 2011, 39(10):148-155.
    [3] [2] 方舟,程清,裴旭斌.电力营销信息系统数据安全防护[J].计算机与现代化,2019,283(3):115-120.
    [4] FANG Zhou, CHENG Qing, PEI xubin, Security protection of electricity marketing information system[J]. Computer and Modernization ,2019, 283(3): 115-120.
    [5] [3] 镐俊杰, 王丹, 杨东海. 电力信息系统网络安全态势在线评估框架与算法研究[J]. 电力系统保护与控制, 2013, 41(9):116-120.
    [6] HAO Junjie, WANG Dan, YANG Donghai. Research of security online-assessing framework and algorithm in electric power information system[J]. Power System Protection and Control, 2013, 41(9):116-120.
    [7] [4] 郭仁超,徐玉韬.内外网数据安全交换技术在电网企业的应用研究[J].电力大数据,2018,21(2):61-66.
    [8] GUO Renchao, XU Yutao. Research on the application of data security exchange technology of internal and external network in power grid enterprises[J]. Power Systems and Big Data. 2018, 21(2):61-66.
    [9] [5] 曾鸣,刘英新,赵静,等.“云大物移智”与泛在电力物联网融合的安全风险分析及安全架构体系设计[J].智慧电力,2019,47(8):25-31.
    [10] ZENG Ming, LIU Yingxin, ZHAO Jing, etc. Security risk analysis and security architecture design of widespread power internet of things with the use of cloud computing big data internet of things mobile internet and smart city technology.[J], Smart Power, 2019, 47(8):25-31.
    [11] [6] 曾鸣,王雨晴,李明珠,等.泛在电力物联网体系架构及实施方案初探[J].智慧电力,2019,47(4):1-7.
    [12] ZENG Ming, WANG Yuqing, LI Mingzhu, etc. Preliminary study on the architecture and implementation plan of widerspread power internet of things[J]. Smart Power, 2019, 47(4):1-7.
    [13] [7] 陈智雨, 高德荃, 王栋,等. 面向能源互联网的电力量子保密通信系统性能评估[J]. 计算机研究与发展, 2017,54(4):711-719.
    [14] CHEN Zhiyu, GAO Dequan, WANG Dong, etc. Performance evaluation of power quantum secure communication system for energy internet[J]. Journal of Computer Research and Development, 2017, 54(4): 711-719.
    [15] [8] 刘国军, 张小建, 吴鹏. 电力量子保密通信安全测试指标体系研究[J]. 电力信息与通信技术, 2017, 15(10):50-54.
    [16] LIU Guojun, ZHANG Xiaojian, WU Peng. Research on security test index system of power quantum secure communication[J]. Electric Power ICT, 2017, 15(10): 50-54.
    [17] [9] 邓伟, 于卓智, 张叶峰,等. 电力调度量子密钥供给及动态调整策略[J]. 电信科学, 2018, 34(12):152-160.
    [18] DENG Wei, YU Zhuozhi, ZHANG Yefeng, et al. Quantum key supply and dynamic adjustment strategies for power dispatch[J]. Telecommunications Science, 2018, 34(12):152-160.
    [19] [10] 李维, 陈璐, 刘少君, 等. 面向电力场景的量子保密通信纠缠退化理论模型[J]. 中国电力, 2019, 52(7):1-5,16.
    [20] LI Wei, CHEN Lu, LIU Shaojun, et al. Research on entanglement degradation model in quantum communication of power system[J]. Electric Power, 2019, 52(7):1-5,16.
    [21] [11] BENNETT C H,BRASSARD G. Quantum cryptography:Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computers,Systems,and Signal Processing,1984.
    [22] [12] Claude E.Shannon. Communication Theory of secrecy systems[J]. Bell System Technical Journal,1948,28(4):656–715.
    [23] [13] Kollmitzerc, Pivkm. 应用量子密码学[M]. 北京:科学出版社, 2015.
    [24] [14] Born M. Statistical Interpretation of Quantum Mechanics[M]. Physics in My Generation. Springer Berlin Heidelberg, 1969:89-90.
    [25] [15] 周泓伊,曾培. 量子随机数发生器[J]. 信息安全研究,2017,3(1):23-35.
    [26] ZHOU Hongyi, ZENG Pei. Quantum random number generation.[J], Journal of Information Security Research.2017,3(1):23-35.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:567
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-12-16
  • 最后修改日期:2021-01-24
  • 录用日期:2021-02-01
文章二维码