基于XGB-KF模型的农业温室温度预测
作者:
作者单位:

1.中国科学院重庆绿色智能技术研究院;2.科大讯飞股份有限公司


Prediction of agricultural greenhouse temperature based on XGB-KF model
Author:
Affiliation:

1.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences;2.Iflytek Co.,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对农业温室大棚温度测量受噪声影响大而不宜直接预测的问题,提出一种将XGBoost和Kalman Filter相结合的集成预测模型XGB-KF。该模型首先基于XGBoost对温室内部当前时刻的温度值进行初步估计,然后使用Kalman Filter对得到的估计结果进行动态修正,得到最终的预测结果。基于涿州地区农业温室大棚的传感器数据进行了数值实验,并以均方根误差(RMSE)作为主要指标对模型进行性能评估。与XGBoost、Bi-LSTM和Bi-LSTM-KF方法相比较,XGB-KF的RMSE分别降低5.22%、10.85%、7.45%。

    Abstract:

    Aiming at the problem that agricultural greenhouse temperature measurement is greatly affected by noise and is not suitable for direct prediction, an integrated prediction model XGB-KF, which combines XGBoost and Kalman Filter, was proposed. The model firstly estimated the temperature of the greenhouse at the current moment based on XGBoost, and then Kalman Filter was used to dynamically modify the estimated result. Finally, the prediction result is obtained. Based on the sensor data of agricultural greenhouse in Zhuozhou, the numerical experiment was carried out. At the same time, root mean square error (RMSE) was used as the main indicator to evaluate the model. Compared with XGBoost, Bi-LSTM and Bi-LSTM-KF methods, the root mean square error (RMSE) of XGB-KF model was reduced by 5.22%, 10.85% and 7.45% respectively.

    参考文献
    [1] 葛志军, 傅理. 国内外温室产业发展现状与研究进展[J]. 安徽农业科学, 2008, 36(35): 15751-15753.
    [2] 周翔宇, 程勇, 王军. 基于改进深度信念网络的农业温室温度预测方法[J]. 计算机应用, 2019, 39(04): 1053-1058.
    [3] 左志宇, 毛罕平, 张晓东, 胡静, 韩绿化, 倪静. 基于时序分析法的温室温度预测模型[J]. 农业机械学报, 2010, 41(11): 173-177 182.
    [4] Wang H, Huang J, Zhou H, et al. An integrated variational mode decomposition and arima model to forecast air temperature[J]. Sustainability, 2019, 11(15): 4018.
    [5] Liu Q, Jin D, Shen J, et al. A WSN-based prediction model of microclimate in a greenhouse using extreme learning approaches[C]//2016 18th International Conference on Advanced Communication Technology (ICACT). IEEE, 2016: 730-735.
    [6] Zou W, Yao F, Zhang B, et al. Verification and predicting temperature and humidity in a solar greenhouse based on convex bidirectional extreme learning machine algorithm[J]. Neurocomputing, 2017, 249: 72-85.
    [7] Yu H, Chen Y, Hassan S G, et al. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO[J]. Computers and Electronics in Agriculture, 2016, 122: 94-102.
    [8] Jung D H, Kim H S, Jhin C, et al. Time-serial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[J]. Computers and Electronics in Agriculture, 2020, 173: 105402.
    [9] Jung D H, Kim H, Park S H, et al. Recurrent Neural Network Models for Prediction of the inside Temperature and Humidity in Greenhouse[J]. ???????? ???????, 2017, 22(1): 135-135.
    [10] Song Y E, Moon A, An S Y, et al. Prediction of Smart Greenhouse Temperature-Humidity Based on Multi-Dimensional LSTMs[J]. Journal of the Korean Society for Precision Engineering, 2019, 36(3): 239-246.
    [11] Hongkang W, Li L, Yong W, et al. Recurrent Neural Network Model for Prediction of Microclimate in Solar Greenhouse[J]. IFAC-PapersOnLine, 2018, 51(17): 790-795.
    [12] Song X, Huang J, Song D. Air quality prediction based on LSTM-Kalman model[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2019: 695-699.
    [13] Yan J, Mu L, Wang L, et al. temporal convolutional networks for the Advance prediction of enSo[J]. Scientific Reports, 2020, 10(1): 1-15.
    [14] Hu P, Tong J, Wang J, et al. A hybrid model based on CNN and Bi-LSTM for urban water demand prediction[C]//2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2019: 1088-1094.
    [15] Kalman R E. A new approach to linear filtering and prediction problems[J]. 1960.
    [16] Chen T, Guestrin C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.
    [17]
    [18]
    [19]
    [20]
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:542
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-01-02
  • 最后修改日期:2021-03-04
  • 录用日期:2021-03-15
文章二维码