基于多源信息融合和ADCNN的离心鼓风机故障诊断
作者:
作者单位:

重庆大学机械传动国家重点实验室

基金项目:

国家自然科学基金资助项目(51975075);重庆市技术创新与应用示范专项资助项目(cstc2018jszx-cyzdX0146)


Fault diagnosis of centrifugal blowers based on multi-source information fusion and ADCNN
Author:
Affiliation:

State Key Lab of Mechanical Transmission, Chongqing University

Fund Project:

Supported by the National Natural Science Foundation of China(51975075);Supported by the Chongqing Technology Innovation and Application Program(cstc2018jszx-cyzdX0146)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对离心鼓风机故障识别过程中单一传感器信号故障信息有限,传统的卷积神经网络(CNN)在处理多源高维数据时特征提取能力不足的问题,提出一种基于多源信息融合和自适应深度卷积神经网络(ADCNN)的离心鼓风机故障诊断方法。首先,基于相关性方差贡献率法实现离心鼓风机多源同类信息的数据层融合,建立多源信息融合框架;然后,利用ADCNN自适应地提取各异类信息的特征并完成特征融合,建立融合多源信息的ADCNN故障诊断模型;最后,将此方法应用于离心鼓风机转子故障诊断上,并与传统的融合模式以及CNN、反向传播神经网络(BPNN)、支持向量机(SVM)方法进行对比,试验结果表明:提出的方法在诊断精度与鲁棒性上均优于其他方法。

    Abstract:

    The fault information of the single sensor signal is limited in the process of centrifugal blower fault recognition, and the traditional convolutional neural network (CNN) has poorer feature extraction abilities when processing multi-source high-dimensional data. To address this problem, this paper proposes a fault diagnosis method based on multi-source information fusion and adaptive deep convolutional neural network (ADCNN) for centrifugal blowers. Firstly, data-level fusion of multi-source homogeneous information of centrifugal blower is realized based on correlation variance contribution rate method, and the multi-source information fusion framework is established. Then, ADCNN is used to adaptively extract the features of heterogeneous information and complete feature fusion, an ADCNN fault diagnosis model that integrates multi-source information is constructed. Finally, the proposed method is applied to the fault diagnosis of centrifugal blower rotor and compared with the traditional fusion method, CNN, BPNN, SVM. The experiment results show that the proposed method has superior diagnosis accuracy and robustness than other methods.

    参考文献
    [1] Lei Y G, Lin J, He Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126.
    [2] 李嫄源, 袁梅, 王瑶, 等. SVM与PSO相结合的电机轴承故障诊断[J]. 重庆大学学报, 2018, 41(01): 99-107.
    [3] LI Yuanyuan, YUAN Mei, WANG Yao, et al. Fault diagnosis of motor bearings based on SVM and PSO[J]. Journal of Chongqing University, 2018, 41(01): 99-107.
    [4] [3] Parvathi S B, Hemamalini S. Rational-Dilation Wavelet Transform Based Torque Estimation from Acoustic Signals for Fault Diagnosis in a Three-Phase Induction Motor[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3492-3501.
    [5] [4] Feng Z P, Chen X W, Zuo M J. Induction Motor Stator Current AM-FM Model and Demodulation Analysis for Planetary Gearbox Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2386-2394.
    [6] [5] Shao H D, Jiang H K, Zhang H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765.
    [7] [6] Chen Y S, Jiang H L, Li C Y, et al. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
    [8] [7] Young T, Hazarika D, Poria S, et al. Recent Trends in Deep Learning Based Natural Language Processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55-75.
    [9] [8] Wen L, Li X Y, Gao L, et al. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
    [10] [9] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(07): 9-18.
    [11] HU Niaoqing, CHENHuipeng, CHENG Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(07): 9-18.
    [12] [10] Jiang G Q, He H B, Yan J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3196-3207.
    [13] [11] Olofsson B, Antonsson J, Kortier H G., et al. Sensor Fusion for Robotic Workspace State Estimation[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2236-2248.
    [14] [12] 任海锋, 潘宏侠. 多振动信号的时频相干多分形特征提取[J]. 振动测试与诊断, 2018, 38(06): 1114-1121+1288.
    [15] REN Haifeng, PAN Hongxia. Extraction of time-frequency coherence multifractal features for multiple vibration signals[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(06): 1114-1121+1288.
    [16] [13] 朱丹宸, 张永祥, 潘洋洋, 等. 基于多传感器信号和卷积神经网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(04): 172-178.
    [17] ZHU Danchen, ZHANG Yongxiang, PAN Yangyang, et al. Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN[J]. Journal of Vibration and Shock, 2020, 39(04): 172-178.
    [18] [14] Jing L, Wang T, Zhao M, et al. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox[J]. Sensors, 2017, 17(2): 414
    [19] [15] Gravina R, Alinia P, Ghasemzadeh H, et al. Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges[J]. Information Fusion, 2017, 35: 68-80.
    [20] [16] Guo X J, Chen L, Shen C Q. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502.
    [21] [17] Laurens V D M, Hinton G. Visualizing Data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:1363
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-01-05
  • 最后修改日期:2021-04-22
  • 录用日期:2021-04-23
文章二维码