凹凸边界形状热弹性问题的自适应无网格法
作者:
作者单位:

重庆大学航空航天学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Adaptive meshless method for thermoelastic problems with concave convex boundary
Author:
Affiliation:

1.College Of Aerosapce Enginering Of ChongQing University;2.College Of Areospace Engineering Of ChongQing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | | | |
  • 文章评论
    摘要:

    为了解决具有凹凸边界形状的平面非定常拟静态热力耦合问题,采用无网格伽辽金算法(EFG)进行求解,使用移动最小二乘法构造形函数,使用拉格朗日乘子法处理本质边界条件(第一类边界条件),通过引入Voronoi邻接准则和后验误差式,对后续结果进行自适应优化;继而构建了一种新的适用于非定常拟静态热力耦合问题的无网格伽辽金(EFG)法自适应计算模型;为了验证计算模型的可行性,分别计算了在二维混合边界条件下光滑与凹凸边界形状平面的温度场以及位移场的分布,并与有限单元法的计算结果进行了对比,表征了有限单元法和无网格法计算结果的差异,验证了非定常拟静态热力耦合问题的无网格伽辽金(EFG)法计算模型的有效性和精确性。

    Abstract:

    In order to solve the plane unsteady and quasi-static coupled thermoelasticity problems with concave convex boundary shape, the element free Galerkin method (EFG) is used to solve the problem, the Moving least square method(MLS) is used to construct the shape function, the Lagrange multiplier method is used to deal with the essential boundary conditions (the first kind of boundary conditions), the Voronoi adjacency criterion and the posteriori error formula are introduced to adaptively optimize the subsequent results; A new EFG adaptive model for unsteady quasi-static and coupled thermoelasticity problems is constructed. The temperature field and displacement field distribution in the planes with smooth and concave convex boundary shape are calculated under two-dimensional mixed boundary conditions, respectively. And the results are compared with those of finite element method. The difference between the results of finite element method and meshless method is characterized, and the effectiveness and accuracy of EFG for unsteady quasi-static thermoelasticity coupled problem are verified

    参考文献
    [1] 王洪刚.热弹性力学概论[M]. 北京:清华大学出版社,1989.
    [2] 段进涛, 史旦达, 汪金辉, 等. 火灾环境下钢结构响应行为的 FDS-ABAQUS 热力耦合方法研究[J].工程力学,2017, 34(2): 197―206.
    [3] Duan Jintao, Shi Danda, Wang Jinhui, et al. Study on FDS-ABAQUS thermal mechanical coupling method for response behavior of steel structures under fire [J]. Engineering mechanics, 2017, 34 (2): 197-206.
    [4] [3] Mavri? B, ?arler B. Application of the RBF collocation method to transient coupled thermoelasticity [J].International Journal of Numerical Methods for Heat &Fluid Flow, 2017, 27(5): 1064―1077.
    [5] [4] Nowinski J L. Theory of thermoelasticity with applications [M].New York: Sijhoff & Noordhoff International Publishers, 1978.
    [6] [5] Boley B A, Weiner J H. Theory of thermal stresses [M].New York: Dover Publications, 2011.
    [7] [6] 马永斌,何天虎.基于分数阶热弹性理论的含有球型空腔无限大体的热冲击动态响应[J].工程力学,2016,33(7):31―38.
    [8] Ma Yongbin,HeTianhu.Thermal shock dynamicresponse of an infinite body with a spherical cavity underfractional order theory of thermoelasticity [J].Engineering Mechanics, 2016,33(7): 31 ― 38. (in Chinese).
    [9] [7] 谷良贤,王一凡.几何非线性假设下温度大范围变化瞬态热力耦合问题研究[J].工程力学, 2016,33(8):221―230.
    [10] Gu Liangxian, Wang Yifan. The transient response ofthermo-mechanical coupling with wide change intemperature based on the hypothesisof geometrynon liearity[J].Engineering Mechanics, 2016, 33(8):221―230. (in Chinese)
    [11] [8] Boley B A, Tolins I S. Transient coupled thermoelasticboundary value problems in the half-space [J].Journal of Applied Mechanics-ASME,1962, 29(4): 637―646.
    [12] [9] M.A.Biot,Generalized Lagrangian Thermoelasticity of the Thermorheology [J].J.Thermal Stresses,1981,3(4):293-320.
    [13] [10] Nariboli G A.Spherically symmetric thermal shock in a medium with thermal and elastic deformations coupled [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1959, 14(1): 75―84.
    [14] [11] Takeuti Y, Ishida R, Tanigawa Y. On an axisymmetric coupled thermal stress problem in a finite circular cylinder [J]. Journal of Applied Mechanics-ASME, 1983, 50(1): 116―122.
    [15] [12] Oden J T. Finite elements of nonlinear continua [M].New York:Dover Publications, 2006.
    [16] [13] Gao X W. Boundary element analysis in thermoelastic with and without internal cells [J]. International Journal for Numercial Methods in Engineering, 2003, 57(7):975-990.
    [17] [14] 范悦宏.无网格法在数值传热学中应用研究. [D].南京理工大学硕士学位论文,2015.
    [18] [15] Belytschko T, Lu Y Y, and Gu L. Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering, 1994, 37:229-256.J].International Journal for Numerical Methods in Engineering., 1994, 37(2):229-256.
    [19] [16] 李庆华,陈莘莘.二维耦合热弹性动力学问题的无网格自然邻接点Petrov-Galerkin法[J].土木与环境工程学报.2019,41(5):109-114.
    [20] Li Qinghua, Chen Xinxin. Meshless natural adjacency point Petrov Galerkin method for two-dimensional coupled thermoelastic dynamics [J]. Chinese Journal of civil and environmental engineering. 2019,41 (5): 109-114
    [21] [17] 王峰,郑保敬等.热弹性动力学耦合问题的插值型移动最小二乘无网格法研究[J].工程力学,2019,36(4):37-43.
    [22] Wang Feng, Zheng Baojing, et al. Study on interpolation type moving least squares meshless method for coupled thermoelastic dynamics [J]. Engineering mechanics, 2019,36 (4): 37-43.
    [23] [18] A. Anguloa, L. Perez Pozob, F. Perazzob.A posteriori error estimator and an adaptive technique in meshless fifinite points method. [J]. Engineering Analysis with Boundary Elements, 2009,33(11):1322-1338.
    [24] [19] 李永永.自适应无网格方法.[D].苏州大学硕士学位论文,2011.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:517
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-01-31
  • 最后修改日期:2021-03-14
  • 录用日期:2021-03-17
文章二维码