连续迭代投影多任务优先级方法
作者:
作者单位:

重庆大学 机械传动国家重点实验室,重庆 400044

中图分类号:

TP241

基金项目:

国家自然科学基金资助项目


Prioritized multi-task method of iteratively successive projection
Author:
Affiliation:

The State Key Laboratory of Mechanical Transmission, Chong’qing University, Chong’qing 400044, P.R.China

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    相比传统非冗余机器人,冗余机器人具有更高灵活性。为了充分地利用机器人的冗余度,需要对任务进行插入和移除,使机器人能够在非结构化环境中完成复杂任务。但任务在状态切换过程中会造成机器人速度不连续。针对该问题,本文基于连续迭代投影原理,提出了连续迭代投影多任务优先级算法,能够保证关节速度的连续性以及任务的切入与移除,从而在冗余度的范围内尽可能地保证低优先级任务。同时,基于李雅普诺夫稳定性理论,当迭代次数趋于无穷大时,证明了所提出的连续迭代投影多任务优先级算法的稳定性。对六杆平面机械臂在障碍物存在下的轨迹跟踪任务进行了仿真,验证了该方法的连续性和稳定性。

    Abstract:

    Compared with traditional non-redundant robots, redundant robots have higher flexibility. In order to make full use of the robot"s redundancy, tasks need to be inserted and removed, so that the robot can complete complex tasks in an unstructured environment. However, the robot velocity would be discontinuous during the task state switching. In response to this problem, this paper is based on the iteratively successive projection mechanism, a iteratively successive projection multi-task priority algorithm is proposed, which can ensure the continuity of joint velocity as tasks switch between inactive and active states, so as to ensues low priority tasks as much as possible within the ability of redundancy. At the same time, based on Lyapunov"s stability theory, the stability of the proposed iteratively successive projection multi-task priority algorithm is proved under the condition that the number of iterations tends to infinity. The trajectory tracking task of the six-bar planar manipulator in the presence of obstacles is simulated, which verifies the continuity and stability of the proposed method.

    参考文献
    [1] Liegeois A. Automatic supervisory control of the configuration and behavior of multibody mechanisms[J]. Systems Man & Cybernetics IEEE Transactions on, 1977, 7(12): 868-871.
    [2] Maciejewski A A, Klein C A. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments[J]. International Journal of Robotics Research, 1985, 4(3):109-117.
    [3] Egeland O. Task-space tracking with redundant manipulators[J]. IEEE Journal on Robotics and Automation, 1987, 3(5):471-475.
    [4] Chiacchio P, Chiaverini S, Sciavicco L, et al. Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy[J]. International Journal of Robotics Research, 1991, 10(4):410-425.
    [5] Xiang J, Zhong C, Wei W. General-weighted least-norm control for redundant manipulators[J]. IEEE Transactions on Robotics, 2010, 26(4):660-669.
    [6] Chan T F, Dubey R V. A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators[J]. IEEE Transactions on Robotics and Automation, 1995, 11(2):P.286-292.
    [7] Jiang P, Ji X, Wei W, et al. General-weighted least-norm control for redundant manipulators under time-dependent constraint[J]. International Journal of Advanced Robotic Systems, 2015, 12.
    [8] Huang S, Xiang J, Wei W, et al. On the virtual joints for kinematic control of redundant manipulators with multiple constraints[J]. IEEE Transactions on Control Systems Technology, 2018, 26(1):65-76.
    [9] Jiang P, Huang S, Xiang J, et al. A unified approach for second-order control of the manipulator with joint physical constraints[J]. Journal of Mechanisms & Robotics, 2017, 9(4).
    [10] Nakamura Y, Hanafusa H, Yoshikawa T. Task-priority based redundancy control of robot manipulators[J]. International Journal of Robotics Research, 1987, 6(2):3-15.
    [11] Siciliano B, Slotine J J E. A general framework for managing multiple tasks in highly redundant robotic systems[C]. Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments. 1991, 2:1211-1216.
    [12] Mansard N, Remazeilles A, Chaumette F. Continuity of varying-feature-set control laws[J]. IEEE Transactions on Automatic Control, 2009, 54(11):2493-2505.
    [13] Chiaverini S. Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1997, 13(3):398-410.
    [14] Petric T, Zlajpah L. Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem[J]. Robotics & Autonomous Systems, 2013, 61(9): 948-959.
    [15] Mansard N, Khatib O, Kheddar A. A unified approach to integrate unilateral constraints in the stack of tasks[J]. IEEE Transactions on Robotics, 2009, 25(3):670-685.
    [16] Lee J, Mansard N, Park J. Intermediate desired value approach for task transition of robots in kinematic control[J]. IEEE Transactions on Robotics, 2012, 28(6):1260-1277.
    [17] Jiang P, Huang S, Xiang J, et al. Iteratively successive projection: a novel continuous approach for the task-based control of redundant robots[J]. IEEE Access, 2019, 7: 25347-25358.
    [18] 黄水华. 多约束下的机械臂运动控制算法研究[D]. 浙江:浙江大学, 2016.HUANG Shuihua. Research on motion control algorithm of manipulator with multiple constraints [D]. ZheJiang: ZheJiang University, 2016. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:1804
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-03
  • 最后修改日期:2021-04-13
  • 录用日期:2021-04-13
文章二维码