基于机器视觉的隧道裂缝检测方法研究
作者:
作者单位:

兰州交通大学 自动化与电气工程学院

中图分类号:

TP391.4???

基金项目:

甘肃省自然科学基金资助项目


Research on Crack Detection Method for Tunnels Based on Machine Vision
Author:
Affiliation:

School of Automation and Electrical Engineering,Lanzhou Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    裂缝检测是结构安全性评估的重要指标,基于图像处理的传统裂缝检测方法在光照不均匀、噪声污染严重的隧道环境下具有噪声大、精度低等缺点。针对该问题,提出一种基于机器视觉的隧道裂缝识别算法,首先对隧道图像进行频域滤波与空域差分,增强图像纹理特征;将经上述步骤分割后的图像通过设置面积参数Tv、饱和度参数Ts与特殊参数Tv`、Ts`提取背景噪声并删除,使算法能够检测出完整的隧道裂缝图像;最后,结合本文应用场景的无突变性与发展规律性,设计轻量化裂缝连接算法连接上述步骤中断裂的裂缝,避免漏检现象的发生。实验结果表明,本文方法能够在复杂隧道环境有效提取出完整裂缝,对隧道裂缝图像识别精确率达到94%,召回率达到98%,尺寸精度达到92%。检测精度能够满足实际工程需求。

    Abstract:

    Crack detection is an important indicator of structural safety assessment. Traditional crack detection methods based on image processing have the disadvantages of large noise and low accuracy in a tunnel environment with uneven illumination and serious noise pollution. Aiming at this problem, a tunnel crack recognition algorithm based on machine vision is proposed. First, the tunnel image is filtered in frequency domain and is differenced in spatial domain to enhance the image texture features; then the image segmented by the above steps is extracted by setting the area parameter Tv, the saturation parameter Ts and the special parameters Tv`, Ts` to extract the background noises and delete them, in order to detect the complete tunnel crack images; finally, combining the non-mutation and development regularity of the application scenario in this paper, designing a lightweight crack connection algorithm to connect the breakpoints in crack images to avoid the undetected phenomenon. Experiments show that the images processed in this paper can effectively extract complete cracks, and the accuracy of image recognition of tunnel cracks reaches 94%, the recall rate reaches 98%, and the detection accuracy can meet the actual engineering needs.

    参考文献
    [1] 周颖,刘彤.基于计算机视觉的混凝土裂缝识别[J].同济大学学报(自然科学版),2019,(9).1277-1285.hou Ying, Liu Tong. Recognition of concrete cracks based on computer vision[J]. Journal of Tongji University (Natural Science Edition), 2019, (9). 1277-1285.
    [2] 范新南,汪杰,史朋飞,李敏.基于头脑风暴优化的PCNN路面裂缝分割算法[J/OL].西南交通大学学报:1-8[2021-01-31].an Xinnan,Wang Jie,Shi Pengfei,Li Min.PCNN pavement crack segmentation algorithm based on brainstorming optimization[J/OL].Journal of Southwest Jiaotong University:1-8[2021-01-31].
    [3] 朱力强,白彪,王耀东,余祖俊,郭保青.基于特征分析的地铁隧道裂缝识别算法[J].铁道学报,2015,37(05):64-70.hu Liqiang,Bai Biao,Wang Yaodong,Yu Zujun,Guo Baoqing.Crack Recognition Algorithm for Subway Tunnel Based on Feature Analysis[J].Journal of the China Railway Society,2015,37(05):64-70.
    [4] 张振海,尹晓珍,王阳萍,闵永智.基于特征分析的图像式地铁隧道裂缝检测方法研究[J].铁道科学与工程学报,2019,16(11):2791-2800.hang Zhenhai,Yin Xiaozhen,Wang Yangping,Min Yongzhi.Research on image-based subway tunnel crack detection method based on feature analysis[J].Journal of Railway Science and? Engineering,2019,16(11):2791-2800.
    [5] 顾桂梅,冉建民,周咏.基于高斯-中值的钢轨表面缺陷图像滤波研究[J].铁道科学与工程学报,2018,15(08):1943-1949.u Guimei,Ran Jianmin,Zhou Yong.Research on Image Filtering of Rail Surface Defects Based on Gauss-Median[J].Journal of Railway Science and Engineering,2018,15(08):1943-1949.
    [6] H. Zakeri, Fereidoon Moghadas Nejad, Ahmad Fahimifar. Rahbin: A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection[J]. Automation in Construction, 2016, 72(2):211-235.
    [7] Lu G F, Zhao Q C, Liao J G, et al.Pavement crack identification based on automatic threshold iterative method[C].SPIE, 2016, 10322:103221F.
    [8] 王耀东,朱力强,史红梅,方恩权,杨玲芝.基于局部图像纹理计算的隧道裂缝视觉检测技术[J].铁道学报,2018,40(02):82-90.ang Yaodong,Zhu Liqiang,Shi Hongmei,Fang Enquan,Yang Lingzhi.Tunnel crack visual detection technology based on local image texture calculation[J].Journal of the China Railway Society,2018,40(02):82-90.
    [9] Y. Quan, J. Sun, Y. Zhang and H. Zhang, "The Method of the Road Surface Crack Detection by the Improved Otsu Threshold," 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 2019, pp. 1615-1620, doi: 10.1109/ICMA.2019.8816422.
    [10] 贾东峰,张伟平,刘燕萍.多尺度空间下的隧道裂缝与渗水区域检测[J].同济大学学报(自然科学版),2019,47(12):1825-1830.ia Dongfeng,Zhang Weiping,Liu Yanping.Detection of tunnel cracks and seepage area in multi-scale space[J].Journal of Tongji University (Natural Science Edition),2019,47(12):1825-1830.
    [11] 王博,王霞,陈飞等.航拍图像的路面裂缝识别[J].光学学报,2017,37(08):126-132.ang Bo,Wang Xia,Chen Fei et al. Pavement crack recognitio based on aerial images[J].Acta Optica Sinica,2017,37(08):126-132.
    [12] K. Fernandes and L. Ciobanu, "Pavement pathologies classification using graph-based features," 2014 IEEE International Conference on Image Processing (ICIP), Paris, 2014, pp. 793-797, doi: 10.1109/ICIP.2014.7025159.
    [13] T. Murakami et al., "High spatial resolution LIDAR for detection of cracks on tunnel surfaces," 2018 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 2018, pp. 1-2.
    [14] Two-dimensional Otsu’s thresholding segmentation method based on grid box filter[J] . Wei ya Guo,Xiao fei Wang,Xue zhi Xia..Optik - International Journal for Light and Electron Optics . 2014
    [15] Yusuke FujitaYoshihiko Hamamoto.A robust automatic crack detection method from noisy concrete surfaces[J].Machine Vision Applications,2011,22(2).245-254.
    [16] 于潇宇,郭玉波,陈刚,叶东.基于点目标连通域标记的实时特征提取及其分布式运算[J].光学学报,2015,35(02):104-114.Yu Xiaoyu,Guo Yubo,Chen Gang,Ye Dong.Real-time feature extraction and distributed computing based on connected domain labeling of point targets[J].Acta Optica Sinica,2015,35(02):104-114.
    作者简介:季坤(1997—),男,硕士,主要从事交通信息工程及控制与图像处理方面的研究。E-mail:517823356@qq.com。导师简介:张振海(1983—),男,博士,副教授,硕士生导师,主要从事交通信息工程及控制与图像处理方面的研究。E-mail:764411629@qq.com。党建武(1963—),男,博士,教授,博士生导师,主要从事计算机软件及计算机应用;自动化技术;铁路运输。E-mail:djw0931@163.com。
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:706
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-22
  • 最后修改日期:2021-09-06
  • 录用日期:2021-09-13
文章二维码