结合图神经网络捕捉高阶信息的推荐算法
作者:
作者单位:

重庆大学 计算机学院

中图分类号:

TP301.6

基金项目:

国家自然科学基金资助项目(61902042);重庆市自然科学基金资助项目(cstc2020jcyj-msxmX0652)


Capturing high-level information recommendation algorithm with graph neural network
Affiliation:

Chongqing University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于会话的推荐任务是基于匿名会话来预测用户的下一步操作。该领域现有的模型都是基于当前会话信息来完成用户行为预测,却都忽略会话与会话间存在的相关过渡信息。为此提出一种基于图神经网络捕捉高阶信息推荐算法。首先通过聚合本地邻居与高阶邻居传递信息学习项目的嵌入向量,其次利用注意力机制,针对当前会话进行匿名用户的长短期兴趣挖掘,最终生成预测评分。在真实数据集Yoochoose与Diginetica上的实验结果表明:与当前基于会话的推荐算法相比,所提算法具有更好的推荐性能。

    Abstract:

    The session-based recommendation task is about predict the user's next action based on an anonymous session. Existing approaches all make prediction by analyzing the current session, ignoring relevant transitions between each sessions the user historically made. Therefore, a recommendation algorithm based on graph neural network to capture higher order information is proposed. Firstly, learning the embedding vector of the item by aggregating information from local neighbors as well as higher order neighbors. Secondly,capturing the short-term and long-term interest with attention mechanism. Finally generate ranking score for predition. Experimental results on real data sets Yoochoose and Diginetica show that the proposed algorithm significantly improves the performance of the recommendation system compared to exisiting session-based recommendation algorithm.

    参考文献
    [1] Hu Zhibing, Wang Jiachun, Yan Ya, et al. Neural graph personalized ranking for top-N recommendation [J]. Knowledge-Based Systems, 2020. https://doi.org/10.1016/j. knosys. 2020.106426.
    [2] 唐浩然,曾骏,李烽,等.结合地点类别和社交网络的兴趣点推荐[J].重庆大学学报,2020, 43 (7): 42-50.ang H R, Zeng J, Li F, et al. Point of interestre commendation based on location category and social network [J]. Journal of Chongqing Universit, 2020, 43 (7): 42-50.
    [3] 任星怡,宋美娜,宋俊德.基于位置社交网络的上下文感知的兴趣点推荐[J].计算机学报,2017,40(4):824-841.Ren X Y, Song M N, Song J D. Context-Awarepoint-of-interestre commendation in location-based social network [J] .Chinese Journal of Computers, 2017, 40 (4): 824-841.(inChinese)
    [4] Cui Zhihua, Xu Xianghua, Xue Fei, et al. Personalized recommendation system based on collaborative filtering for IoT scenarios [J]. IEEE Transactions on Services Computing, 2020, 13 (4): 685-695.
    [5] Koren Y. Collaborative filtering with temporal dynamics [J]. Communications of the ACM, 2010, 53 (4): 89-97.
    [6] 兰艳, 曹芳芳. 面向电影推荐的时间加权协同过滤算法的研究[J]. 计算机科学, 2017, 44(4):295-301.Lan Y, Cao F F. Research of time weighted collaborative filtering algorithm in movie recommendation[J]. Computer Science, 2017, 44(4):295-301.(in Chinese)
    [7] 张海通, 黄增峰. 基于影响力扩散的会话推荐模型[J/OL]. 计算机应用研究, 2021, 38 (7), (2020-12-27)[2021-03-15]. https://doi.org/10.19734/j.issn.1001-3695.2020.11.0373.hang H T, Huang Z F. Session recommendation model based on influence diffusion [J/OL]. Journal of Application Research of Computers, 2021, 38 (7), (2020-12-27)[2021-03-15]. https://doi.org/10.19734/j.issn.1001-3695.2020.11.0373.
    [8] Wu Zonghan, Pan Shirui, Chen Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
    [9] Shani G, Heckerman D, Brafman R I, et al. An mdp-based recommender system[J]. Journal of Machine Learning Research, 2005, 6 (1): 1265-1295.
    [10] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized Markov chains for next-basket recommendation[C]//In Proceedings of the 19th International Conference on World Wide Web(WWW), New York: ACM Press, 2010: 811-820.
    [11] Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization[EB/OL]. (2015-02-19)[2021-03-15], https://arxiv.org/abs/1409.329.
    [12] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C]//In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS''17), New York: Curran Associates Inc. Press, 2017: 6000-6010.
    [13] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29)[2021-03-10], https://arxiv.org/abs/1511.06939.
    [14] Li Jing, Ren Pengjie, Chen Zhumin, et al. Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management(CIKM), New York: ACM Press, 2017: 1419-1428.
    [15] Liu Qiao, Zeng Yifu, Mokhosi R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]//In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining(KDD), New York: ACM Press, 2018: 1831-1839.
    [16] Wu Shu, Tang Yuyuan, Zhu Yanqiao. Session-based recommendation with graph neural networks[C]//In Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(01): 346-353.
    [17] Sundari P S, Subaji M. An improved hidden behavioral pattern mining approach to enhance the performance of recommendation system in a big data environment [J]. Journal of King Saud University-Computer and Information Sciences, 2020. https://doi. org/10. 1016/j. jksuci. 2020. 09. 010
    [18] Yang Z, Chen W, Huang J. Enhancing recommendation on extremely sparse data with blocks-coupled non-negative matrix factorization [J]. Neurocomputing, 2018, 278: 126-133.
    [19] Chung J, Gulcehre C, Cho K H, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[EB/OL]. (2014-11-11)[2021-03-15], https://arxiv.org/abs/1412.3555.
    [20] Wang Ziyang, Wei Wei, Cong Gao, et al. Global context enhanced graph neural networks for session-based recommendation[C]//The 43rd International ACM SIGIR conference on research and development in Information Retrieval. New York: ACM Press, 2020: 169-178.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:891
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-03-23
  • 最后修改日期:2021-04-13
  • 录用日期:2021-04-21
文章二维码