基于差分进化和XGBoost算法的储层岩性识别方法
作者:
作者单位:

东北石油大学物理与电子工程学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Reservoir lithology identification method based on differential evolution and XGBoost algorithm
Author:
Affiliation:

Department of Physics and Electronic Engineering, Northeast Petroleum University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    利用测井资料进行地层岩性识别是石油勘探工程的关键环节,基于机器学习的岩性分类器因其优异性能成为目前研究热点。针对现有方法过分依赖相关人员调参经验的问题,结合XGBoost集成分类器的强鲁棒性和差分进化算法的快速搜索能力,提出了一种可自动调参的机器学习岩性识别方法,通过差分进化对XGBoost分类器参数种群迭代得到全局最优岩性识别模型。在大庆油田实际测井数据基础上,分别开展了基于BP神经网络、RandomForest、XGBoost等方法的岩性识别对比实验,结果表明所提方法在总体准确度、各子类识别精度以及识别稳定性均获得较好表现。

    Abstract:

    Using logging data to identify stratum lithology is a key link in petroleum exploration engineering. The lithology classifier based on machine learning has become a current research hotspot due to its excellent performance. Aiming at the problem that existing methods rely too much on relevant personnel's parameter adjustment experience, combined with the strong robustness of the XGBoost integrated classifier and the fast search ability of the differential evolution algorithm, a machine learning lithology identification method that can automatically adjust parameters is proposed. Differential evolution iterates the parameter population of XGBoost classifier to obtain the global optimal lithology recognition model. Based on the actual logging data of Daqing Oilfield, comparative experiments on lithology identification based on BP network, Randomforest, XGBoost have been carried out. The results show that the proposed method has good performance in overall accuracy, stability and recognition accuracy of each sub-category.

    参考文献
    [1] 邹才能,杨智,张国生,等.非常规油气地质学建立及实践[J].地质学报,2019,93(01):12-23.
    [2] JUNG H, JO H, KIM S, et al. Geological model sampling using PCA-assisted support vector machine for reliable channel reservoir characterization[J]. Journal of Petroleum Science and Engineering, 2018, 167: 396-405.
    [3] 朱可丹,王雅春,林彤,衣启樊,王长江,任磊.地质统计学反演方法对单一河道砂体的刻画[J].地球物理学进展,2019,34(01):278-286.
    [4] SILVA A A, NETO I A L, MISSAGIA R M, et al. Artificial neural networks to support petrographic classification of carbonate-siliciclastic rocks using well logs and textural information[J]. Journal of Applied Geophysics, 2015, 117: 118-125.
    [5] SEBTOSHEIKH M A, MOTAFAKKERFARD R, RIAHI M A, et al. Support vector machine method, a new technique for lithology prediction in an Iranian heterogeneous carbonate reservoir using petrophysical well logs[J]. Carbonates and evaporites, 2015, 30(1): 59-68.
    [6] 胡素云,朱如凯,吴松涛,白斌,杨智,崔景伟.中国陆相致密油效益勘探开发[J].石油勘探与开发,2018,45(04):737-748.
    [7] BERGEN K J, JOHNSON P A, MAARTEN V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J].Science, 2019, 363(6433).
    [8] 檀朝东,陈见成,刘志海,王辉萍,史赞绒,杨若谷.大数据挖掘技术在石油工程的应用前景展望[J].中国石油和化工,2015(01):49-51.
    [9] AL-ANAZI A, GATES I D. On the capability of support vector machines to classify lithology from well logs[J]. Natural Resources Research, 2010, 19(2): 125-139.
    [10] XIE Y, ZHU C, ZHOU W, et al. Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances[J]. Journal of Petroleum Science and Engineering, 2018, 160: 182-193.
    [11] AO Y, LI H, ZHU L, et al. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling[J]. Journal of Petroleum Science and Engineering, 2019, 174: 776-789.
    [12] XIANG M, QIN P, ZHANG F. Research and application of logging lithology identification for igneous reservoirs based on deep learning[J]. Journal of Applied Geophysics, 2020, 173: 103929.
    [13] ZENG L, REN W, SHAN L. Attention-based bidirectional gated recurrent unit neural networks for well logs prediction and lithology identification[J]. Neurocomputing, 2020, 414: 153-171.
    [14] ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. arXiv preprint arXiv:1808.5377, 2018.
    [15] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016: 785-794.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:594
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-04-01
  • 最后修改日期:2021-04-09
  • 录用日期:2021-04-20
文章二维码