基于深度学习的铁路计算机联锁界面文本定位与识别方法研究
作者:
作者单位:

1.兰州交通大学,甘肃省工业交通自动化工程技术研究中心,甘肃省轨道交通信号与控制评测行业技术中心;2.兰州交通大学 自动化与电气工程学院

中图分类号:

TP391.1

基金项目:

甘肃省科技计划项目(20CX9JA125,20JR5RA407)


Research on Text Location and Recognition Method of Railway Computer Interlocking Interface Based on Deep Learning
Author:
Affiliation:

Lanzhou Jiaotong University,School of Automation Electrical Engineering

Fund Project:

Gansu Province Science and Technology Planning Project(20CX9JA125,20JR5RA407)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了有效解决铁路计算机联锁系统人工测试效率低下、准确性低等问题,提出了一种面向铁路联锁上位机界面文本定位与识别的深度学习模型。首先,通过对比基于CTPN(Connectionist Text Proposal Network)神经网路的文本定位模型与ResNet50、AlexNet、ZF以及VGG16四种卷积神经网络分别结合的策略,选择了最优的特征提取网络VGG16,增强了卷积特征图表示高层语义信息的细节特征,以利于定位小文本区域。其次,对比常见的目标检测模型在文本定位效果上的表现以及采用dropout方法,提升了文本定位模型CTPN网络的泛化能力和鲁棒性。然后,采用水平投影和垂直投影相结合的分割方法,可有效避免联锁上位机界面文本黏连等问题。最后,采用改进的AlexNet网络,输出文本识别结果。通过在TensorFlow环境验证联锁上位机界面文本定位和识别数据集,结果显示,CTPN网络在铁路联锁上位机界面文本定位精确率上达到了87.98%,召回率73.33%,调和平均数指标80.39%;改进的AlexNet网络文本识别准确率达到了89%。说明本文方法能够对铁路计算机联锁上位机界面文本实现准确定位和识别,并为联锁自动测试过程中自动办理进路及测试结果自动分析提供可靠的数据支持。

    Abstract:

    In order to effectively solve the problems of low efficiency and low accuracy of manual testing of railway computer interlocking systems, a deep learning model for text localization and recognition of the upper computer interface of railway interlocking is proposed. First, by comparing the strategy of combining the text localization model based on CTPN (Connectionist Text Proposal Network) neural network with the four convolutional neural networks of ResNet50, AlexNet, ZF and VGG16, the optimal feature extraction network VGG16 was selected, which enhanced Convolutional feature maps represent the detailed features of high-level semantic information to facilitate the location of small text areas. Secondly, comparing the performance of common target detection models on the text localization effect and adopting the dropout method, the generalization ability and robustness of the CTPN network of the text localization model are improved. Then, the use of a combination of horizontal projection and vertical projection can effectively avoid problems such as text sticking on the interface of the interlocking upper computer. Finally, the improved AlexNet network is used to output the text recognition results. By verifying the text positioning and recognition data set of the interlocking host computer interface in the TensorFlow environment, the results show that the accuracy of the text positioning of the CTPN network in the railway interlocking host computer interface has reached 87.98%, the recall rate is 73.33%, and the average index of harmony is 80.39%; The improved AlexNet network achieves 89% accuracy in text recognition. It shows that the method in this paper can accurately locate and recognize the interface text of the railway computer interlocking upper computer, and provide reliable data support for automatic routing and automatic analysis of test results during the automatic interlocking test process.

    参考文献
    [1] 赵志熙. 微机联锁系统技术[M].中国铁道出版社,1995.$NLZhao Z X. Microcomputer interlocking system technology[M]. China Railway Publishing House, 1995.
    [2] 徐洪泽, 岳强. 车站信号计算机联锁控制系统:原理及应用[M].中国铁道出版社,2005.$NLXu H Z, Yue Q. Station Signal Computer Interlocking Control System: Principle and Application[M]. China Railway Publishing House, 2005.
    [3] 曹爽. 航空软件测试用例自动生成方法研宄[D].南京航空航天大学,2010.1-2.$NLCao S. Research on automatic generation method of test cases for aviation software [D]. Nanjing University of Aeronautics and Astronautics, 2010.1-2.
    [4] 孙婧鑫. Web应用的自动化测试研究[J].电脑与信息技术,2020,28(05):43-44+68.$NLSun J X. Research on automated testing of web applications[J]. Computer and Information Technology, 2020, 28(05): 43-44+68.
    [5] 梁艺凡. A*算法在计算机联锁上位机软件中的应用研究[D].兰州交通大学,2013.$NLLiang Y F. Research on A* algorithm application in upper computer software of computer interlocking [D]. Lanzhou Jiaotong University, 2013.
    [6] Tian Z, Huang W L, He T, He P, Qiao Y. Detecting text in natural image with connectionist text proposal network[J]. In: Proceedings of the 14th European Conference on Computer Vision. Cham, Switzerland: Springer, 2016. 56-72.
    [7] Ma J , Shao W , Ye H , et al. Arbitrary-Oriented Scene Text Detection via Rotation Proposals[J]. IEEE transactions on multimedia, 2017, PP(99):1-1.
    [8] Liao M H, Shi B G, Bai X, Wang X G, Liu W Y. Textboxes: a fast text detector with a single deep neural network[C]. In: Proceedings of the 31st AAAI Conference on Artiflcial Intelligence. SanFrancisco, CA, USA: AAAI, 2017.4161-4167.
    [9] Deng D, Liu H, Li X, et al. PixelLink: Detecting Scene Text via Instance Segmentation[J]. arXiv: Computer Vision and Pattern Recognition, 2018.
    [10] Zhang Z, Zhang C, Shen W, et al. Multi-oriented Text Detection with Fully Convolutional Networks[C]. computer vision and pattern recognition, 2016: 4159-4167.
    [11] 刘澍. Research on Key Technologies of License Plate Character Recognition System[D].华中师范大学,2019.$NLLiu S. Research on Key Technologies of License Plate Character Recognition System[D]. Central China Normal University, 2019.
    [12] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No.27.
    [13] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
    [14] Shi, Baoguang, Bai, Xiang, Yao, Cong. An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 39(11):2298-2304.
    [15] 艾鑫, 邹琪, 罗常津. 面向精确定位的列车车号文本定位与识别[J].计算机辅助设计与图形学学报,2020,32(11):1863-1870.$NLAi X, Zou Q, Luo C J. Precise localization and recognition of train characters [J]. Journal of Computer Aided Design and Graphics, 2020, 32(11):1863-1870.
    [16] 桑军, 郭沛, 项志立, 罗红玲, 陈欣. Faster-RCNN的车型识别分析[J].重庆大学学报,2017,40(07):32-36.$NLSang J, Guo P, Xiang Z L, Luo H L, Chen X. Vehicle detection based on faster-RCNN[J]. Journal of Chongqing University, 2017, 40(07): 32-36.
    [17] 朱意星. 基于深度学习的文本与遥感图像目标检测研究[D].中国科学技术大学,2020.$NLZhu Y X. Research on deep learning based on object detection for text and aerial image [D]. University of Science and Technology of China, 2020.
    [18] 田萱,王亮,丁琪.基于深度学习的图像语义分割方法综述[J].软件学报,2019,30(02):440-468.$NLTian X, Wang L, Ding Q. Review of image semantic segmentation based on deep learning[J]. Journal of Software, 2019, 30(02):440-468.
    [19] Xi Wang, Hong Du, Xi Ping Wen. Research on Segmentation and Recognition of Printed Chinese Characters[J]. Journal of Physics: Conference Series,2019,1237(2).
    [20] 李祥鹏,闵卫东,韩清,刘瑞康.基于深度学习的车牌定位和识别方法[J].计算机辅助设计与图形学学报,2019,31(06):979-987.$NLLi X P, Min W D, Han Q, Liu R K. License plate location and recognition based on deep learning[J]. Journal of Computer Aided Design and Graphics,2019,31(06):979-987.
    [21] 纪荣嵘, 林绍辉, 晁飞, 吴永坚, 黄飞跃.深度神经网络压缩与加速综述[J].计算机研究与发展,2018,55(09):1871-1888.$NLJi R R, Lin S H, Chao F, Wu Y J, Huang F Y. Deep Neural network compression and acceleration: a review[J].Computer Research and Development,2018,55(09):1871-1888.
    [22] 罗月童, 黄文, 饶永明, 卢家品.基于深度学习的芯片表面字符识别方法[J].合肥工业大学学报(自然科学版),2020,43(04):463-467.$NLLuo Y T, Huang W, Rao Y M, Lu J P. Method of chip surface character recognition based on deep learning[J]. Journal of Hefei University of Technology (Natural Science Edition),2020,43(04):463-467.
    [23] 姜典转.基于深度学习的票据文本定位与识别研究[D].北京交通大学,2019.$NLJiang D Z. Research on text localization and recognition bills based on deep learning[D]. Beijing Jiaotong University, 2019.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:690
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-04-27
  • 最后修改日期:2021-09-13
  • 录用日期:2021-09-13
文章二维码