融合标签信息和图卷积网络的文本表示方法
作者:
作者单位:

昆明理工大学 信息工程与自动化学院 昆明

中图分类号:

TP311

基金项目:

国家自然科学基金(61966020,61762056)。


Text representation method combines label information and graph convolutional network
Author:
Affiliation:

Faculty of Information Engineering and Automation,Kunming University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    文本分类是自然语言处理中的一项基础研究,目的是为输入的文本输出特定的标签类别。而文本表示是文本分类的中间环节,也是文本分类的重要内容。针对短文本语义信息较少,难以表征的问题,本文提出了一种融合标签信息和自注意力图卷积神经网络的文本表示方法。该方法利用标签和文本之间的语义联系,构造了基于标签注意力的单个文本表示,然后利用自注意力图卷积神经网络提取多个文本的全局特征,获得融合全局特征的特定文本表示用于文本分类。最后将得到的文本输入分类器中,得到分类结果。通过在MR和R8数据集的实验结果表明,相比于其他文本分类模型,本文所提出的模型在MR数据集上F1值提升2.58%,准确率提升2.02%;在R8数据集上F1值提升3.52%,准确率提升2.25%。

    Abstract:

    Text classification is a basic research in natural language processing, which aims to output specific label categories for input text. And text representation is the intermediate link of text classification and an important content of text classification. Aiming at the problem that short text has less semantic information and is difficult to represent, this paper proposes a text representation method combines label information and self-attention graph convolutional neural network. This method uses the semantic relation between tags and texts to construct a specific single text representation based on tags, and then extracts the global features of multiple texts by using the self-attention graph convolution neural network to obtain a specific text representation fusing the global features. Finally, the text is input into the classifier to obtain the classification result. The experimental results based on R8 and MR show that compared with the other models, our model increases the F1 values and accuracy by 2.58% and by 2.02% on the MR data; and increases the F1 values and accuracy by 3.52% and by 2.52% on R8 dataset.

    参考文献
    [1] Kim Y., F.: Convolutional Neural Networks for Sentence Classification. Arxiv:214-218,2014.
    [2] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. Arxiv:1412.3555,2014.
    [3] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
    [4] Henaff M, Bruna J, LeCun Y. Deep convolutional networks on graph-structured data. Arxiv:1506.05163,2015.
    [5] Joachims T. Text categorization with support vector machines: Learning with many relevant features[C]. European conference on machine learning. Springer, Berlin, Heidelberg, 1998: 137-142.
    [6] Grobelnik M. Feature selection for unbalanced class distribution and naive bayes[C]. ICML: Proceedings of the Sixteenth International Conference on Machine Learning. 1999: 258-267.
    [7] 贾兆红,李龙澍,朱建建.结合改进非负矩阵分解的模糊网页文本分类算法[J].重庆大学学报,2013,36(08):156-162.JIA ZHAOHONG, LI LONGSHU, ZHU JIANJIAN. Fuzzy webpage text classification algorithm combined with improved NMF[J]. Journal of Chongqing University ,2013,36(08):156-162. (in chinese).
    [8] 赖苏,熊忠阳,江帆,唐蓉君.利用改进的多项式核函数支持向量机进行文本分类[J].重庆大学学报,2012,35(S1):41-45.LAI SU, XIONG ZHONGYANG, JIANG FAN, TANG RONGJUN. An improved polynomial support vector machine classifier for text categorization[J]. Journal of Chongqing University, 2012,35(S1):41-45. (in chinese).
    [9] 丁洁,刘晋峰,杨祖莨,阎高伟.基于深度学习的交通拥堵检测[J/OL].重庆大学学报:1-9[2021-04-27]. http://kns.cnki.net/kcms/detail/50.1044.N.20200317.0832.002.html.ING JIE, LIU JINFENG, YANG ZULIANG, YAN GAOWEI. Traffic congestion detection based on deep learning[J/OL]. Journal of Chongqing University, 1-9[2021-04-27]. (in chinese). http://kns.cnki.net/kcms/detail/50.1044.N.20200317.0832.002.html.
    [10] 邢砾文,姚文凯,黄莹.基于深度学习的含未知复合故障多传感器信号故障诊断[J].重庆大学学报,2020,43(09):93-100.XING LIWEN, YAO WENKAI, HAUNG YING. Fault diagnosis of multi-sensor signal with unknown composite fault based on deep learning[J]. Journal of Chongqing University, 2020,43(09):93-100. (in chinese).
    [11] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]. Advances in neural information processing systems. 2013: 3111-3119.
    [12] Pennington J, Socher R, Manning C D. Glove: Global vectors for word representation[C]. Proceedings of the 2014 conference on empirical methods in natural language processing. 2014: 1532-1543.
    [13] Liu P, Qiu X, Huang X. Recurrent neural network for text classification with multi-task learning. Arxiv: 1506.5163,2016.
    [14] Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks. Arxiv:1503.00075,2015.
    [15] Luo Y. Recurrent neural networks for classifying relations in clinical notes[J]. Journal of biomedical informatics, 2017, 72: 85-95.
    [16] Zhu H, Lin Y, Liu Z, et al. Graph neural networks with generated parameters for relation extraction. Arxiv: 1902.00756,2019.
    [17] Shen T, Zhou T, Long G, et al. Disan: Directional self-attention network for rnn/cnn-free language understanding. Arxiv: 1709.04696,2017.
    [18] Cai H, Zheng V W, Chang K C C. A comprehensive survey of graph embedding: Problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
    [19] Yasunaga M, Zhang R, Meelu K, et al. Graph-based neural multi-document summarization. Arxiv:1706.06681,2017.
    [20] Zhang N, Deng S, Sun Z, et al. Long-tail relation extraction via knowledge graph embeddings and graph convolution networks. Arxiv: 1903.01306,2019.
    [21] Zhang Y, Lu W, Ou W, et al. Chinese medical question answer selection via hybrid models based on CNN and GRU[J]. Multimedia Tools and Applications, 2019: 1-26.
    [22] Yao L, Mao C, Luo Y. Graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 7370-7377.
    [23] Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks. Arxiv:1710.10903,2017
    [24] Wang G, Li C, Wang W, et al. Joint embedding of words and labels for text classification[J]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Arxiv:1805.04174, 2018.
    [25] Zhang X, Zhao J, Le Cun Y. Character-level convolutional networks for text classification[C]. Advances in neural information processing systems. 2015: 649-657.
    [26] Shen D, Wang G, Wang W, et al. Baseline needs more love: On simple word-embedding-based models and associated pooling mechanisms. Arxiv:1805.09843,2018.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:694
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-04-29
  • 最后修改日期:2021-06-16
  • 录用日期:2021-06-21
文章二维码