CNN和ED-BLSTM融合的起重机械健康预测方法
作者:
作者单位:

重庆大学 大数据与软件学院

中图分类号:

TP399???????

基金项目:

国家重点研发计划


Health Prediction of Lifting Machinery based on CNN and ED-BLSTM
Author:
Affiliation:

School of Big Data Software Engineering,Chongqing University

Fund Project:

National Key Research and Development and Program of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对起重机械设备健康状态多时间单位步长预测中出现的监测数据时间跨度小、数据量密集、特征多维、没有标签的问题,提出了一种结合卷积神经网络(CNN)和编码解码器双向长短期循环神经网络(ED-BLSTM)的起重机械设备健康预测方法。对监测数据进行时序排列,在保证相同输入输出时间步长尺寸的情况下对数据集切分重组;将处理后数据集输入到卷积神经网络,提取出主要特征,得到多维矩阵;采用基于编码解码器的双向长短期循环神经网络对多维矩阵进行训练,建立起重机械多时间单位步长的目标预测模型;从而达到长期预测起重机械设备健康状态的目的。对比实验表明,所提方法的验证损失最多降低0.474%,最少降低0.097%;和预测损失最多降低1.411%,最少降低1.230%相比于目前的主流技术均有降低,其实际预测性能有较大提高,对工业起重机械健康预测技术的发展有积极意义。

    Abstract:

    Aiming at the problem of multi time-step-length prediction of lifting machinery, a method for health prediction of lifting machinery equipment combining convolutional neural network (CNN) and bidirectional long short-term memory with encoder-decoder(ED-BLSTM) is proposed. Firstly, sorting the monitoring data in chronological order, and then segmenting and reorganizing the data set when ensuring the same input and outputting time step size. Then inputting the processed data set to the convolutional neural network, and extracting its main features to obtain Multi-dimensional matrix. This matrix is used as input to train the bidirectional long and short term cyclic neural network based on the encoder-decoder, and establishing the target prediction model of multi-time unit step of lifting machinery. Comparative experiments show that the verification loss and prediction loss of the proposed method are reduced compared with the current mainstream technology, and its actual prediction performance is greatly improved, which has positive significance for the development of industrial equipment health prediction technology.

    参考文献
    [1] 李志勇,马志强.浅谈国内起重机械发展现状[J].起重运输机械,2020,(17):35-37.i Zhiyong, Ma Zhiqiang. Opinions about the development status of domestic hoisting machinery [J]. Lifting the transport machinery, 2020, (17): 35-37.
    [2] 齐凯,王新华,何成忠.大型起重机械安全预警机制的研究[J].中国安全科学学报,2011,21(01):136-139.i Kai, Wang Xinhua, He Chengzhong. Research on the safety early warning in the mechanism of large cranes[J]. China Safety Science Journal, 2011, 21(01): 136-139.
    [3] 黄时文,柴啸龙,林晓瑜.中国股市周期性研究及其价格监控[J].经济数学,2019,36(03):16-20.uang Shiwen,Chai Xiaolong,Lin Xiaoyu.Research on China''s stock market cyclicality and its price monitoring[J].Economic Mathematics,2019,36(03):16-20.
    [4] Hang Zhang, Jia Ming Zhu*, Bao sheng Yu, et al. Analysis of Chinese Retail Price Characteristics and Short-term Forecast Based on ARMA Model. 2020, 5(2):
    [5] 俞学豪,赵子岩.基于BR和GBDT的电力信息通信客服系统多标签文本分类[J/OL].电力系统自动化:1-8[2021-01-09].http://kns.cnki.net/kcms/detail/32.1180.TP.20210104.0957.002.html.Yu Xuehao,Zhao Ziyan.Multi-label text classification of electric power information communication customer service system based on BR and GBDT[J/OL].Automation of electric power systems:1-8[2021-01-09].http://kns.cnki.net/kcms
    [6] 张娅峰,龚振.基于迭代决策树的ICU临床干预预测[J].计算机技术与发展,2020,30(12):118-122.hang Yafeng,Gong Zhen.ICU clinical intervention prediction based on iterative decision tree[J].Computer Technology and Development,2020,30(12):118-122.
    [7] K. Park, Y. Choi, W. J. Choi, H. Ryu and H. Kim. LSTM-Based Battery Remaining Useful Life Prediction With Multi-Channel Charging Profiles[J]. IEEE Access,2020,8():20786-20798.
    [8] X. Tang.Large-Scale Computing Systems Workload Prediction Using Parallel Improved LSTM Neural Network[J]. IEEE Access, 2019,7():40525-40533.
    [9] Y. Meng, F. Qi, H. Zuo, B. Chen, X. Yuan and Y. Xiao. Multi-step LSTM Prediction Model for Visibility Prediction[C]. 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom, 2020, 1-8.
    [10] X. Xiao, L. Wang, K. Ding, S. Xiang and C. Pan. Deep Hierarchical Encoder–Decoder Network for Image Captioning," in IEEE Transactions on Multimedia, vol. 21, no. 11, pp. 2942-2956, Nov. 2019, doi: 10.1109/TMM.2019.2915033.
    [11] 初雅莉,郑虹,侯秀萍.基于动态语义编码双向LSTM的中文语义相似度计算[J].计算机应用与软件,2020,37(6):224-229.hu Yali, Zheng Hong, Hou Xiuping. Chinese semantic similarity calculation based on dynamic semantic coding Bidirectional LSTM[J]. Computer Applications and Software, 2020, 37(6): 224-229.
    [12] 彭玉青,宋初柏,闫倩,赵晓松,魏铭.基于VDCNN与LSTM混合模型的中文文本分类研究[J].计算机工程,2018,044(11):190-196.eng Yuqing, Song Chubai, Yan Qian, Zhao Xiaosong, Wei Ming. Research on Chinese text classification based on the hybrid model of VDCNN and LSTM[J]. Computer Engineering, 2018, 44(11): 190-196.
    [13] J. Yang, J. Qu, Q. Mi and Q. Li. A CNN-LSTM Model for Tailings Dam Risk Prediction[J]. IEEE Access, 2020,8():206491-206502.
    [14] J. Li, X. Li and D. He.A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction[J]. IEEE Access, 2019,7():75464-75475.
    [15] 刘利军,雷宇,余臻.双向LSTM模型在航空发动机气路故障诊断的应用[J].航天控制,2020,38(05):67-72.iu Lijun, Lei Yu, Yu Zhen. Application of Bidirectional LSTM model in aero-engine gas circuit fault diagnosis[J]. Aerospace Control, 2020, 38(05): 67-72.
    [16] D. Ruta, L. Cen and Q. H. Vu.Deep Bi-Directional LSTM Networks for Device Workload Forecasting[C]. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), Sofia, Bulgaria, 2020, 115-118.
    [17] 张永峰,陆志强.基于集成神经网络的剩余寿命预测[J].工程科学学报,2020,42(10):1372-1380.hang Yongfeng, Lu Zhiqiang. Remaining life prediction based on integrated neural network [J]. Chinese Journal of Engineering, 2020, 42(10): 1372-1380.
    [18] Yuan Y , Lin L , Huo L Z , et al. Using An Attention-based LSTM Encoder-Decoder Network for Near Real-Time Disturbance Detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, (99):1-1.
    [19] S. H. Park, B. Kim, C. M. Kang, C. C. Chung and J. W. Choi. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture[C]. 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, 2018,1672-1678.
    [20] A. Saeed et al. Hybrid Bidirectional LSTM Model for Short-Term Wind Speed Interval Prediction[J]. IEEE Access, 2020, 8():182283-182294.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:481
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-05-11
  • 最后修改日期:2021-07-09
  • 录用日期:2021-07-13
文章二维码