基于风压差原理的风速风向测量方法与系统
作者:
作者单位:

1.国网青岛供电公司;2.重庆大学雪峰山能源装备安全国家野外科学观测研究站;3.重庆大学 输配电装备及系统安全与新技术国家重点实验室

中图分类号:

TH765

基金项目:

中央高校基本科研业务费NO.2022CDJJJ-016


Wind speed and direction measurement method and system based on wind pressure difference principle
Author:
Affiliation:

1.State Grid Qingdao Power Supply Company;2.Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University;3.State Key Laboratory of Power Transmission Equipment System Security and New Technology,Chongqing University

Fund Project:

(Project No. 2022CDJJJ-016 supported by the Fundamental Research Funds for the Central Universities).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为准确测量自然界风的风速和风向,基于风压差原理提出了一种风速风向测量方法。风绕圆柱流动的情况属于亚临界绕流,根据亚临界绕流圆柱表面压力分布曲线,设计六根圆柱管圆周阵列分布,通过六个高精度差压传感器分别测得六根圆柱管管口的动压,选取最大值和与其相邻的管的最大值两个值计算风速和风向。此外,在自然环境中将风速风向仪与风杯式风速计、超声波风速计的测量结果进行对比,结果表明,本文设计的风速风向仪具有响应速度快、精度高、量程大、智能化、持续工作时间长的优势,适合野外试验环境重风速风向的测量。

    Abstract:

    In order to measure the wind speed and direction of natural wind accurately, a wind speed and direction measurement method is proposed based on the principle of wind pressure difference. According to the surface pressure distribution curve of subcritical flow around the cylinder, the circumferential array distribution of six cylindrical pipes is designed. The dynamic pressure of six cylindrical pipe orifices is measured by six high-precision differential pressure sensors, and the maximum value and the maximum value of the adjacent pipe are selected to calculate the wind speed and direction. In addition, the measurement results of anemometer, cup anemometer and ultrasonic anemometer are compared in the natural environment. The results show that the anemometer designed in this paper has the advantages of fast response, high precision, large range, intelligence and long working time, which is suitable for the measurement of heavy wind direction in the field test environment.

    参考文献
    [1] 朱阁彦. 基于波束成形算法的三维风速风向测量方法[D]. 长春: 吉林大学, 2020.hu G Y. 3D wind speed and direction measurement method based on beamforming algorithm [D]. Changchun: Jilin University, 2020.
    [2] 盛森芝,沈熊盛. 流速测量技术[M]. 北京大学出版社, 1987.heng S Z, Shen X S. Velocity measurement technology [M]. Peking University Press, 1987.
    [3] Zhao C, Chen Z, Li J, et al. Wind direction estimation using small-aperture HF radar based on a circular array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2745-2754.
    [4] 单泽彪,刘小松,鲁胜麟,史红伟.基于双阵元超声波接收阵列的风矢量测量[J].仪器仪表学报, 2021,42(02): 228-234.han Z B, Liu X S, Lu S L, Shi H. Wind vector measurement using dual sensors ultrasonic receiving array. Chinese Journal of Scientific Instrument, 2021,42(02):228-234.
    [5] 刘昕,边泽强,李松奎.标准皮托管校准系数测量及不确定度评定分析[J].电子测量技术,2020,43(14):50-54.iu X, Bian Z Q, Li S K. Standard pitot tube calibration coefficient measurement and uncertainty evaluation analysis[J]. Electronic measurement technology. 2020,43(14):50-54.
    [6] 周海坤.基于皮托管原理的风速传感器[J].煤矿安全,2018,49(08):99-101+105.hou H K. Wind speed sensor based on principle of pitot tube[J]. Safety on coal mines, 2018,49 (08): 99-101 + 105.
    [7] Gianluca B , Mirco M , et al. A Spherical Directional Anemometer Sensor System[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2017, 1(4):388.
    [8] 魏昱洲,许西宁. 基于LSTM长短期记忆网络的超短期风速预测[J]. 电子测量与仪器学报,2019,33( 2) : 64-71.Wei Y ZH, Xu X N. Ultra-short-term wind speed prediction model using LSTM networks[J]. Journal of Electronic Measurement and Instrumentation, 019,33( 2) : 64-71
    [9] LeoniA.,StornelliV.,PantoliL.. A low-cost portable spherical directional anemometer for fixed points measurement[J]. Sensors and Actuators A: Physical,2018,280:543-551.
    [10] Ma B,Teng J,Zhu H,et al. Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification[J]. Sensors, 2020,20( 2):1-16.
    [11] Li X B,Sun H X,Gao W,et al. Wind speed and direction measurement based on arc ultrasonic sensor array signal processing algorithm[J]. ISA Transactions, 2016,65: 437-444..
    [12] Li X B, Zhu G Y, GAO W,et al. A novel ultrasonic array signal processing scheme for wind measurement[J]. ISA Transactions, 2018,81: 259-269.
    [13] LopesG. M. G., et al. "Development of 3-D Ultrasonic Anemometer With Nonorthogonal Geometry for the Determination of High-Intensity Winds," IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 11, pp. 2836-2844, Nov. 2017.
    [14] 储玉飞, 刘东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进 展[J]. 量子电子学报, 2020, 37( 5) : 580-600.hu Y F, Liu D, Wang Zh Zh, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020,37( 5) : 580-600.
    [15] Yu C, Shangguan M J, Xia H Y, et al. Fully integrated free-running InGaAs/InP single-photon detector for accurate lidar applications [J]. Optics Express, 2017, 25(13): 14611-14620.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-24
  • 最后修改日期:2024-12-10
  • 录用日期:2024-12-11
文章二维码