[关键词]
[摘要]
为准确测量自然界风的风速和风向,基于风压差原理提出了一种风速风向测量方法。风绕圆柱流动的情况属于亚临界绕流,根据亚临界绕流圆柱表面压力分布曲线,设计六根圆柱管圆周阵列分布,通过六个高精度差压传感器分别测得六根圆柱管管口的动压,选取最大值和与其相邻的管的最大值两个值计算风速和风向。此外,在自然环境中将风速风向仪与风杯式风速计、超声波风速计的测量结果进行对比,结果表明,本文设计的风速风向仪具有响应速度快、精度高、量程大、智能化、持续工作时间长的优势,适合野外试验环境重风速风向的测量。
[Key word]
[Abstract]
In order to measure the wind speed and direction of natural wind accurately, a wind speed and direction measurement method is proposed based on the principle of wind pressure difference. According to the surface pressure distribution curve of subcritical flow around the cylinder, the circumferential array distribution of six cylindrical pipes is designed. The dynamic pressure of six cylindrical pipe orifices is measured by six high-precision differential pressure sensors, and the maximum value and the maximum value of the adjacent pipe are selected to calculate the wind speed and direction. In addition, the measurement results of anemometer, cup anemometer and ultrasonic anemometer are compared in the natural environment. The results show that the anemometer designed in this paper has the advantages of fast response, high precision, large range, intelligence and long working time, which is suitable for the measurement of heavy wind direction in the field test environment.
[中图分类号]
TH765
[基金项目]
南方电网有限责任公司防冰减灾重点实验室支撑项目(GZKJXM20191287)。