面向云边协同的配电变压器运行状态评估及态势预测
作者:
作者单位:

1.中国电力科学研究院有限公司;2.重庆大学自动化学院;3.国网山东省电力公司电力科学研究院

基金项目:

国家电网有限公司总部科技项目,配电物联网关键技术研究(5206001900F7)


Operation state assessment and situation prediction of distribution transformer for cloud edge collaboration
Author:
Affiliation:

1.China Electric Power Research Institute;2.College of Automation,Chongqing University;3.State Grid Shandong Electric Power Research Institute

Fund Project:

the State Grid Corporation of China Science and Technology, Research on Key Technologies of Power Distribution Internet of Things (5206001900F7)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着电力物联网建设的高速推进,在配电物联网“云管边端”建设体系指导下,本文提出一种配电变压器运行状态评估与趋势预测通用技术架构。该架构将分别部署在云中心与边缘节点处,在云边协同机制支持下分析处理海量电力数据,完成对大规模配电变压器集群的运行管理。具体流程包括提取配电变压器基础状态、即时状态、累积状态等多维特征,构建评估指标体系,通过动态评估模型实现对配电变压器运行状态的实时画像描述;根据特征数据流的时序性和变化趋势,借助长短期记忆循环神经网络提取数据规律,结合支持向量回归模型进行预测,获得未来时段的特征数据流,并以此输入动态评估模型,实现配电变压器未来运行态势预测。最后,通过实例论证了该技术架构的适用性和先进性。

    Abstract:

    With the rapid development of the Power Internet of Things, under the guidance of the "cloud-pipe-edge-terminal" construction system, this paper presents a general technical framework for operation state evaluation and trend prediction of distribution transformer. The framework is deployed in cloud center and edge nodes respectively, and use the cloud edge collaboration mechanism to analyze and process massive power data, so as to complete the operation management of large-scale distribution transformer cluster. The specific process includes extracting multi-dimensional characteristics of distribution transformer, such as basic state, real-time state and cumulative state, constructing evaluation index system, realizing real-time portrait description of distribution transformer operation state through dynamic evaluation model. According to the time order and change trend of the characteristic data stream, Long Short-Term Memory network (LSTM) is used to analysis regulation of characteristic data, and Support Vector Regression model (SVR) for its prediction. The future characteristic data flow is obtained, which is input into the dynamic evaluation model to realize the future operation trend prediction of the distribution transformer. Finally, examples are given to illustrate the advanced nature and applicability of the technology framework.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-04
  • 最后修改日期:2021-07-15
  • 录用日期:2021-07-26
文章二维码