深水环境下压力补偿泵柱塞副的润滑特性分析
作者:
作者单位:

1.长安大学 工程机械学院机电液一体化研究所,西安 710064;2.先进节能驱动技术教育部工程研究中心,成都 610031

基金项目:

国家自然科学基金资助项目(51509006),先进节能教育部工程中心开放课题资助项目(SWEDT–KF201902)。


Analysis of Lubrication Characteristics of Plunger Pair of Pressure Compensation Pump in Deep Water
Author:
Affiliation:

1.Mechatronics Institute of Mechanical Engineering School, Chang’an University, Xi’an, 710064, P.R.China;2.Advanced Energy-Saving Engineering Center of Ministry of Education, Chengdu, 610031, P.R.China

Fund Project:

The National Natural Science Foundation of China 51509006,Engineering Research Center of Advanced Drive Energy Saving Technologies,Ministry of Education SWEDT–KF201902。

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    压力补偿式柱塞泵可较好地适应深水极端环境,但深水极端环境下将使柱塞副的润滑特性发生改变,影响其水下工作性能和应用范围。以压力补偿泵柱塞副油膜的润滑特性为研究对象,考虑深水温度、压力等环境因素对粘度、密度等介质属性的影响,建立深水环境下柱塞副油膜的数值模型,提出在柱塞偏心方向采用坐标轮换寻优和有限差分离散有机结合的方法求解柱塞副膜厚等表征润滑特性的参数。结果表明,在水深1000m,主轴转角约90°时,柱塞副油膜出现<1μm的极薄区域,且压力极差达80MPa。改变主轴转速和斜盘倾角时,泄漏量和轴向摩擦力的变化较大气工况下更显著。不同水深下,轴向摩擦力与水深间呈正相关变化,泄漏量的变化则相反。相关研究可为深水环境下泵柱塞副的设计和开发提供有益参考。

    Abstract:

    The pressure-compensated plunger pump can better adapt to the extreme deep water environment, but the extreme deep water environment will change the lubrication characteristics of the plunger pair, affecting its underwater working performance and application range. Taking the lubrication characteristics of the auxiliary oil film of the plunger of the pressure compensation pump as the research object, considers the influence of environmental factors such as deep water temperature and pressure on the viscosity, density and other media properties, establishes a numerical model of the auxiliary oil film of the plunger in the deep water environment, and proposes the In the eccentric direction, the method of coordinate rotation optimization and finite difference discretization is used to solve the parameters that characterize the lubrication characteristics such as the thickness of the plunger pair. The results show that when the water depth is 1000m and the rotation angle of the main shaft is about 90o, the secondary oil film of the plunger appears in an extremely thin area less than 1μm, and the pressure difference reaches 80MPa. When changing the spindle speed and the inclination angle of the swash plate, the leakage and axial friction changes more significantly under air conditions. Under different water depths, there is a positive correlation between the axial friction and the water depth, but the change in leakage is the opposite. Related research can provide a useful reference for the design and development of pump plunger pairs in deep water environments.

    参考文献
    [1] Yamaguchi A , Tanioka Y .Motion of pistons in piston-type hydraulic machines : 1st. Report : Theoretical Analysis[J].Japan:Bulletin of JSME.1976:402-407.
    [2] Fang Y , Shirakashi M . Mixed Lubrication Characteristics Between the Piston and Cylinder in Hydraulic Piston Pump-Motor[J]. Psychiatry Research, 1995, 117(1):658-666.
    [3] Gels S, Murrenhoff H. Simulation of the lubricating film between contoured piston and cylinder[J]. International Journal of Fluid Power. International Journal of Fluid Power, 2010, 11(2): 15-24.
    [4] Wieczorek U , Ivantysynova M . CASPAP-A computer aided design tool for axial piston machines [R]. Bath:Bath Workshop on Power Transmission and Motion Control PTMC, 2000: 113-126.
    [5] Wieczorek U , Ivantysynova M . Computer Aided Optimization of Bearing and Sealing Gaps in Hydrostatic Machines—The Simulation Tool Caspar[J]. International Journal of Fluid Power, 2002, 3(1):7-20.
    [6] Lasaar R. The influence of the microscopic and macroscopic gap geometry on the energy dissipation in the lubricating gaps of displacement machines[C]. Proc. of 1st FPNI-PhD Symposium Hamburg 2000.
    [7] Ivantysynova M, Lasaar R. An Investigation into Micro- and Macrogeometric Design of Piston/Cylinder Assembly of Swash Plate Machines[J]. International Journal of Fluid Power, 2004, 5(1):23-36.
    [8] Tanaka K , Nakahara T , Kyogoku K . Piston Rotation and Frictional Forces between Piston and Cylinder of Piston Pump and Motor.[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1993, 59(560):1192-1197.
    [9] Tanaka K , Nakahara T , Kyogoku K . Half-frequency whirl of pistons in axial piston pumps and motors under mixed lubrication[J]. Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology, 2003,217(2):93-102.
    [10] Song Y, Ma J, Zeng S. A numerical study on influence of temperature on lubricant film characteristics of the piston/cylinder interface in axial piston pumps[J]. Energies, 2018, 11(7): 1-16.
    [11] Jiang Q, Yang H, Yu Y, et al. Numerical analysis of the water film characteristics in the eccentric state of a radial piston pump[J]. IEEE Access, 2018, 6: 227-235.
    [12] 徐兵,张军辉,杨华勇.基于虚拟样机的轴向柱塞泵柱塞副仿真分析[J].兰州理工大学学报,2010,36(03):31-37.
    [13] 张斌. 轴向柱塞泵的虚拟样机及油膜压力特性研究[D]. 杭州: 浙江大学, 2009.
    [14] 刘桓龙, 王国志, 徐著华, 等. 水压间隙润滑中的惯性效应[J]. 液压与气动, 2006(03): 1-4.
    [15] 曹学鹏. 深海电液比例液压源关键技术及工作特性研究[D]. 西南交通大学, 2010.
    [16] 叶安乐,李凤岐.物理海洋学[M].青岛:青岛海洋大学出版社,1992.
    [17] 周钊强. 变深环境下柱塞泵工作特性研究[D].长安大学,2018.
    [18] 曹学鹏, 卫昌辰, 赵帅贵, 等. 深海环境下油液密度特性变化规律研究 J 润滑与密封,2020, 45(08): 41-46.
    [19] 曹学鹏, 周钊强, 王官洪, 等. 基于变深环境模型的油液黏度特性变化规律研究[J]. 润滑与密封, 2017,42(07):1-6.
    [20] 温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [21] 王晓萍. 约束优化问题坐标轮换法程序设计[J]. 中国科技博览,2010(30):487-488.
    [22] 黄平. 润滑数值计算方法[M]. 高等教育出版社, 2012.
    [23] 温诗铸. 摩擦学原理-第3 版[M]. 北京:清华大学出版社, 2008.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:1218
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-07-28
  • 最后修改日期:2021-09-22
  • 录用日期:2021-09-23
文章二维码