基于渗透型导轨的EV-DWPT系统输出稳定研究
作者:
作者单位:

河海大学能源与电气学院


Research on the Output Stability of the EV-DWPT System Based on the Permeable Rails
Author:
Affiliation:

School of Energy and Electricity, Hohai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    文章针对电动汽车动态无线充电系统(EV-DWPT)的多段短导轨型结构中存在的动态过程中原副边线圈之间互感波动而导致的功率跌落问题,给出了一种基于脉冲同步控制方法的渗透型导轨结构的优化设计技术。首先,基于LCC-S谐振网络拓扑的双发射单接收电路进行分析,推导出输出功率及原副边线圈电流的表达式;其次,通过COMSOL仿真分析并结合脉冲同步控制技术分析了渗透区域长度及补偿线圈匝数对互感值的影响;最后,通过PLECS仿真平台对电路模型进行了仿真。结果表明,基于脉冲同步控制下所述耦合机构动态过程互感波动为3.3%,相较于单激励模式的56%及传统矩形线圈的32%的互感波动得到了很好的抑制,仿真得到文章所设计的EV-DWPT系统功率波动为±3.2%。

    Abstract:

    Based on the power drop caused by the mutual inductance fluctuation between the primary and the secondary coils in the dynamic process of the short-rail structure in the EV-DWPT system, this paper proposes an optimization design technology utilizing the pulse synchronization control method for the permeable rails structure. Firstly, the expressions of the output power and the primary and secondary coil current were deduced by analyzing the dual transmitter and single receiver circuit based on the LCC-S resonant topology. Secondly, the effects that the length of the permeable areas and the number of the coils on mutual inductance were analyzed by COMSOL and pulse synchronization control method. Finally, the simulation model of the circuit was established through the simulation platform PLECS. The simulation results show, by utilizing the pulse synchronization control method, the fluctuation of the mutual inductance is about 3% in the dynamic process of the coupler. Comparing to the 56% of the single exciting mode and the 32% of the traditional rectangular coil, the fluctuation of the mutual inductance has been greatly inhibited. And the output power fluctuation of the EV-DWPT system designed in this paper is ±3.2%. Keywords:wireless power transfer, EV-DWPT, impulsive synchronization, permeable rail, power fluctuation

    参考文献
    [1] 赵争鸣,张艺明,陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报,2013,33(3):2-13.HAO Zhengming, ZHANG Yiming, CHEN Kainan. New Progress of Magnetically-coupled Resonant Wireless Power Transfer Technology[J]. Proceedings of the CSEE,2013,33(3):2-13.
    [2] 刘帼巾,白佳航,崔玉龙,等. 基于双LCL变补偿参数的磁耦合谐振式无线充电系统研究[J]. 电工技术学报,2019,34(8):1569-1579.IU Guojin, BAI Jiahang, CUI Yulong, et al. Double-Sided LCL Compensation Alteration Based on MCR-WPT Charing System[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2019,34(8):1569-1579.
    [3] Daniel Arnitz,Matthew S Reynolds. MIMO wireless power transfer for mobile devices[J]. IEEE Pervasive Computing,2016,15(4):36-44.
    [4] 李应智,魏业文,王琦婷,等. 应用于磁耦合谐振式无线电能传输系统的高效率E类逆变电源设计方法[J]. 电工技术学报,2019,34(2):219-225.I Yingzhi, WEI Yewen, WANG Qiting, et al. Design Method of High Efficiency Class-E Inverter Applied to Magnetic Coupled Resonant Wireless Power Transmission System[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2019,34(2):219-225.
    [5] 赵昕. 基于无线电能传输模式的无人机悬停无线充电技术研究[D]. 重庆:重庆大学,2015.
    [6] J.S.Ho, S.Kim, and A.Poon. Midfield wireless powering for implantable systems[J]. IEEE,2013,101(6):1369-1378.
    [7] S.Y.Hui. Planar wireless charging technology for portable electronic products and Qi[J]. Proc.IEEE,2013,101(6):1290-1301.
    [8] 翟渊,孙跃,戴欣,等. 磁共振模式无线电能传输系统建模与分析[J]. 中国电机工程学报,2012,32(12):155-160.HAI Yuan, SUN Yue, DAI Xin, et al. Modeling and Analysis of Magnetic Resonance Wireless Power Transmission Systems[J]. Proceedings of the CSEE,2012,32(12):155-160.
    [9] 吴理豪,张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报,2020,35(6):1153-1165.U Lihao, ZHANG Bo. Overview of Static Wireless Charing Technology for Electric Vehicles: Part I[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2020,35(6):1153-1165.
    [10] 吴理豪,张波. 电动汽车静态无线充电技术研究综述(下篇)[J]. 电工技术学报,2020,35(8):1153-1165.WU Lihao, ZHANG Bo. Overview of Static Wireless Charing Technology for Electric Vehicles: Part II[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2020,35(6):1662-1678.
    [11] 宋凯,朱春波,李阳,等.用于电动汽车动态无线供电的多初级绕组并联无线电能传输技术[J].中国电机工程学报,2015,35(17):4445-4453.ONG Kai, ZHU Chunbo, LI Yang, et al. Wireless Power Transfer Technology for Electric Vehicle Dynamic Charing Using Multi-parallel Primary Coils[J]. Proceedings of the CSEE,2015,35(17):4445-4453.
    [12] 田勇.基于分段导轨模式的电动车无线供电技术关键问题研究[D].重庆:重庆大学,2012.
    [13] 朱春波,姜金海,宋凯,等.电动汽车动态无线充电关键技术研究进展[J].电力系统自动化,2017,41(2):60-65,72.HU Chunbo, JIANG Jinhai, SONG Kai, et al. Research Progress of Key Technologies for Dynamic Wireless Charing of Electric Vehicle[J]. Automation of Electric Power Systems, 2017,41(2):60-65,72.
    [14] Y.Li. et al. A new coil structure and its optimization design with constant output voltage and constant output current for electric vehicle dynamic wireless charging[J]. IEEE Trans. Ind. Informat,2019,15(9):5244-5256.
    [15] J.M.Miller, P.T.Jones, J.Li, et al. ORNL experience and challenges facing dynamic wireless power charging of EV’s[J]. IEEE Circuits Syst. Mag,2015,15(2):40-53.
    [16] K.Lee, Z.Pantic, and S.M.Lukic. Reflexive field containment in dynamic inductive power transfer systems[J]. IEEE Trans. Power Electron,2014,29(9):4592-4602.
    [17] ABDOLKHANI A,HU A P. Improved autonomous current-fed push-pull resonant inverter[J]. IET Power Electron,2014,7(8):2103-2110.
    [18] 胡超. 电动汽车无线供电电磁耦合机构能效特性及优化方法研究[D]. 重庆:重庆大学,2015.2
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:171
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-16
  • 最后修改日期:2021-12-02
  • 录用日期:2021-12-06
文章二维码