边云协同系统中基于边缘情景自适应模型的目标检测
作者单位:

1.国家气象信息中心;2.鹏城实验室

基金项目:

国家自然科学基金资助项目


An Edge-Cloud Collaborative Computing Framework Oriented to Edge Model Scenario Adaptive Tasks and Its Application in Object Detection
Author:
Affiliation:

1.National Meteorological Information Center;2.PENGCHENG Laboratory

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着现代物联网系统越来越趋向于大型化、复杂化和智能化,对边缘处计算设备的感知能力和计算能力提出越来越高的要求,使协同低功耗高实时的边缘计算与低成本高性能的云计算成为计算智能发展的未来。为实现边云之间的“协同”,实现边缘计算与云计算应用价值的最大化,提出了一种边云系统中面向边缘模型情景任务自适应的计算框架。首先,以云侧模型推理与边缘侧模型推理间的差异性为基础,构建了边云协同机制模型;然后,采用少量边缘应用侧任务样本对迁移的云侧模型进行增量学习,提升云侧模型到边缘侧模型迁移的自适应性能;最后,实时监测边侧推理结果,实现边侧模型性能的保持。

    Abstract:

    As modern IoT systems tend to become increasing larger, complex and intelligent, which makes requirements become higher on the perception and computation capabilities of calculation devices at the edge. The future development of cloud computation focuses on enabling the collaboration of low-power, high-real-time edge computation with low-cost and high-performance. In order to realize the collaboration between edge and cloud to maximize the application value of the advantages of edge and cloud computation, this paper proposed a computing framework for edge model scenario adaptive tasks in edge-cloud system. Firstly, the edge-cloud collaboration mechanism model is constructed based on the difference between inference results of cloud-side model and edge-side model. Secondly, a small amount of edge application-side task samples are employed to incrementally re-train the cloud-side model to the adaption performance of edge-side transferred model from the cloud-side model. Finally, the performance of the edge-size can be maintained by the real-time monitoring of the side-side reasoning results.

    参考文献
    [1] Kumar M, Sharma S., Goel A., et al. A comprehensive survey for scheduling techniques in cloud computing[J]. Journal of Network and Computer Applications, 2019, 143: 1-33.
    [2] Shi W.., Sun H., Cao J., et al. Edge computing: a new computing model for the Internet era [J]. Journal of Computer Research and Development, 2017, 54(5): 907-924.
    [3] 陈玉平, 刘波, 林伟伟, 程慧雯. 云边协同综述. 计算机科学,2021,48(3):259-268.
    [4] Chen Y.., Liu B., Lin W., Cheng H.. Survey of Cloud-edge Collaboration [J]. Computer Science, 2021, 48(3): 259-268. (in Chinese)
    [5] Ding C., Zhou A., Liu Y., et al. A Cloud-Edge Collaboration Framework for Cognitive Service [J].? IEEE Transactions on Cloud Computing, 2020, early access.
    [6] 韩青, 高昆仑, 赵婷, 陈江琦, 杨新宇, 杨树森. 边云协同智能技术在电力领域的应用. 物联网学报,2021,5(1):62-71.
    [7] Han Q., Gao K., Zhao T., Chen J., Yang X., Yang S. Application of edge-cloud collaborative intelligence technologies in power grids [J]. Chinese Journal on Internet of Things, 2021, 5(1): 62-71. (in Chinese)
    [8] 白昱阳, 黄彦浩, 陈思远, 张俊, 李柏青, 王飞跃. 云边智能:电力系统运行控制的边缘计算方法及其应用现状与展望. 自动化学报,2020,46(3):397-410.
    [9] Bai Y., Huang Y., Chen S., Zhang J., Li B. Wang F. Cloud-edge Intelligence: Status Quo and Future Prospective of Edge Computing Approaches and Applications in Power System Operation and Control [J]. ACTA AUTOMATICA SINICA, 2020, 46(3):397-410. (in Chinese)
    [10] Sodhro A., Pirbhulal S., Albuquerque V., et al. Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial Applications [J]. IEEE Transactions on Industrial Informatics, 2019, 15(7): 4235-4243.
    [11] Qiu T., Chi J., Zhou X., et al. Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges [J]. IEEE Communications Surveys Tutorials, 2020, 22(4): 2462-2488.
    [12] CoPPock H W, Freund J E. All-or-non eversus incremental learning of error less shock escapes by the rat [J]. Science, 1962, 135: 318-319.
    [13] 王玲, 徐培培. 基于自适应增量学习的时间序列模糊聚类算法[J]. 电子学报, 2019, 47(5): 983-991.
    [14] 田慧欣, 李坤, 孟博. 一种用于软测量建模的增量学习算法[J]. 控制与决策, 2015, 30(8): 1523-1526.
    [15] 邱天宇,申富饶,赵金熙.自组织增量学习神经网络综述[J]. 软件学报,2016,27(9):2230-2247.
    [16] 何育欣, 郑伯川, 谭代伦, 等. 基于VGGNet改进网络结构的多尺度大熊猫面部检测[J]. 重庆大学学报, 2020, 43(11):63-71.
    [17] 丁洁, 刘晋峰, 杨祖莨, 等. 基于深度学习的交通拥堵检测[J]. 重庆大学学报, 2021, 44(4):107-116.
    [18] 李旭阳, 牛鑫, 胡军星, 等. 基于集成学习的智能电网主机恶意软件检测方法[J]. 重庆大学学报, 2021, 44(3):143-150.
    [19] Kentaro Toyama, John Krumm, Barry Brumitt, Brian Meyers.Wallflower: Principles and Practice of Background Maintenance [C]//Seventh International Conference on Computer Vision, September 1999, Kerkyra, Greece, pp. 255-261, IEEE Computer Society Press.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-17
  • 最后修改日期:2021-11-30
  • 录用日期:2021-12-06
文章二维码