不同热解温度下褐煤焦样物相及其微结构变化的研究
作者单位:

辽宁工程技术大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Study on the phase and microstructure of lignite char at different pyrolysis temperatures
Author:
Affiliation:

Liaoning Technical University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    热解是褐煤改性提质的重要手段,为研究不同热解温度制取褐煤焦的物相和微结构变化,采集沈北矿区蒲河煤矿褐煤煤样,选取低中高(400 ℃、700 ℃、1000 ℃)三个热解特征温度制取褐煤焦样,通过SEM、XRD、Raman、FT-IR、XPS、低温N2吸附实验,对褐煤焦样的物化结构进行分析。结果表明:热解温度提高,焦样芳香性增强,含氧官能团O-H、C=O、C-O大幅减少,表面含碳官能团,C-C结构增加,C-H结构减少;400 ℃和700 ℃焦样微晶结构缺陷增加,1000 ℃焦样微晶结构趋于有序并向石墨化转变;焦样比表面积和孔容积随热解温度提高先增大后减小,700 ℃焦样拥有最大的比表面积(117.0637 m2/g)和孔容积(0.068134 cm3/g),提高热解温度有利于焦样微孔结构发育。

    Abstract:

    Pyrolysis is an important means of lignite modification and upgrading. In order to study the changes of phase and microstructure of lignite char prepared at different pyrolysis temperatures, lignite samples from Puhe coal mine in Shenbei mining area, were pyrolyzed at three pyrolysis characteristic temperatures (400 ℃,700 ℃ ,1000 ℃) to prepare lignite char samples. The physicochemical structure of lignite coke samples was analyzed by SEM, XRD, Raman, FT-IR, XPS, N2 adsorption experiments. The results show that with the increase of pyrolysis temperature, the aromaticity of coke sample is enhanced, the oxygen-containing functional groups O-H, C=O and C-O of coke sample are greatly reduced, surface carbonaceous functional groups, the intensity of C-C increased and the intensity of C-H reduced. At 400 ℃ and 700 ℃, the microcrystalline structure defects of coke samples increased, while at 1000 ℃, the microcrystalline structure of coke sample tends to order and changes to graphitization. The specific surface area and pore volume of coke samples first increased and then decreased with the increase of pyrolysis temperature. 700 ℃ coke sample has the largest specific surface area (117.0637 m2/g) and pore volume (0.068134 cm3/g). Increasing pyrolysis temperature is conducive to the development of microporous structure of coke sample.

    参考文献
    [1] 朱书全. 褐煤提质技术开发现状及分析[J]. 洁净煤技术, 2011,17(01):1-4.(ZHU Shu-quan. Development status and analysis of lignite quality improvementtechnology[J]. Clean Coal Technology, 2011,17(01):1-4.)
    [2] 王小华. 不同干燥方式对褐煤物化性质及热转化特性影响[D]. 中国矿业大学(北京), 2018.(WANG Xiao-hua. Effect of different drying methods on the physicochemical properties and thermal conversion characteristics of lignite[D].China University of Mining Technology(Beijing), 2018.)
    [3] Li C. Advances in the Science of Victorian Brown Coal[M]. Elsevier Science Ltd, 2004.
    [4] 张小蕊, 邹冲, 赵俊学, 等. XRD和Raman法评估热解气氛中H_2和CO对半焦化学结构的影响[J]. 燃料化学学报, 2019,47(11):1288-1297.(ZAHNG Xiao-rui,ZHOU Chong,ZHAO Jun-xue, et al. Effect of H2 and CO as pyrolysis atmosphere on chemical structure of char by XRD and Raman methods[J].Journal of Fuel Chemistry and Technology , 2019,47(11):1288-1297.)
    [5] 柳晓飞, 尤静林, 王媛媛, 等. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014,42(03):270-276.(LIU Xiao-fei,YOU Jing-lin,WANG Yuan-yuan, et al. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J].Journal of Fuel Chemistry and Technology , 2014,42(03):270-276.)
    [6] 段伦博, 赵长遂, 李英杰, 等. 不同热解气氛煤焦结构及燃烧反应性[J]. 东南大学学报(自然科学版), 2009,39(05):988-991.(DUAN Lun-bo,ZHAO Chang-sui,LI Ying-jie, et al. Structure and combustion reactivity of coal char in different pyrolysis atmospheres[J]. Journal of Southeast University(Natural Science Edition), 2009,39(05):988-991.)
    [7] B Q H A, B K W A, C A H, et al. TG–GC–MS study of volatile products from Shengli lignite pyrolysis[J]. Fuel, 2015,156:121-128.
    [8] Apicella B, Russo C, Ciajolo A, et al. High temperature pyrolysis of lignite and synthetic carbons[J]. Fuel, 2019,241.
    [9] 孙强, 张彦威, 李谦, 等. 褐煤快速热解半焦理化特性及气化活性[J]. 浙江大学学报(工学版), 2016,50(11):2045-2051.(SUN Qiang,ZHANG Yan-wei,LI Qian, et al. Physical and chemical characteristics and gasification reactivity of lignite fast pyrolysis char[J]. Journal of Zhejiang University(Engineering Science), 2016,50(11):2045-2051.)
    [10] Oluwadayo O S, Tobias H, Stephen F F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010,35(12).
    [11] Qiu H, Guo Q, Song Y, et al. Study of the relationship between thermal conductivity and microcrystalline parameters of bulk graphite[J]. New Carbon Materials, 2002,17(1):36-40.
    [12] L L, V S, C K, et al. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001,39(12).
    [13] Zhang Y, Kang X, Tan J, et al. Influence of Calcination and Acidification on Structural Characterization of Anyang Anthracites[J]. Energy Fuels, 2013,27(11):7191-7197.
    [14] 湛文龙, 孙崇, 余盈昌, 等. 高炉焦炭石墨化过程中的微观组织和冶金性能演变[J]. 工程科学学报, 2018,40(6):690-696.(ZHAN Wen-long,SUN Chong,YU Ying-chang, et al. Evolution of coke microstructure and metallurgical properties during graphitization in a blast furnace[J]. Chinese Journal of Engineering, 2018,40(6):690-696.)
    [15] 刘冬冬, 高继慧, 吴少华, 等. 热解过程煤焦微观结构变化的XRD和Raman表征[J]. 哈尔滨工业大学学报, 2016,48(07):39-45.(LIU Dong-dong,GAO Ji-hui,WU Shao-hua, et al. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. Journal of Harbin Institute of Technology, 2016,48(07):39-45.)
    [16] Abdelsayed V, Shekhawat D, Smith M W, et al. Microwave-assisted pyrolysis of Mississippi coal: A comparative study with conventional pyrolysis[J]. Fuel, 2018,217:656-667.
    [17] Yanmei X, Xia C, Liang W, et al. Progress of Raman spectroscopic investigations on the structure and properties of coal[J]. Journal of Raman Spectroscopy, 2020,51(9).
    [18] Eric Q, Jean-No?l R, Lydie B, et al. Maturation grade of coals as revealed by Raman spectroscopy: Progress and problems[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005,61(10).
    [19] Potgieter-Vermaak S, Maledi N, Wagner N, et al. Raman spectroscopy for the analysis of coal: a review[J]. Journal of Raman Spectroscopy, 2015,42(2).
    [20] Xiaojiang L, Jun-ichiro H, Chun-Zhu L. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12).
    [21] 林丹. 脱灰准东煤加压快速热解煤焦结构和反应性的实验研究[D]. 哈尔滨工业大学, 2020.(LIN Dan. Experimental Study on the Structure and reactivity of demineralized Zhundong coal char rapidly pyrolyzed at elevated pressure[D]. Harbin Institute of Technology, 2020.)
    [22] Yingfang X, Jinglin Y, Liming L, et al. Raman Spectroscopic Study of Coal Samples during Heating[J]. Applied Sciences, 2019,9(21).
    [23] 孟德喜. 块状原煤及煤焦热解气化过程中的反应特性和结构演变研究[D]. 华东理工大学, 2020.(MENG De-xi. Research on reaction characteristics and structure evolution during pyrolysis and gasification of lump raw coal and coal char[D]. East China University of Science and Technology, 2020.)
    [24] 张金刚, 孙志刚, 郭强, 等. 神府煤热解的结构变化及煤焦加氢反应性研究[J]. 燃料化学学报, 2017,45(02):129-137.(ZHANG Jin-gang,SUN Zhi-gang,GUO Qiang, et al.Structural changes of Shenfu coal in pyrolysis and hydrogasification reactivity of the char[J].Journal of Fuel Chemistry and Technology , 2017,45(02):129-137.)
    [25] Meng F, Yu J, Tahmasebi A, et al. Characteristics of chars from low-temperature pyrolysis of lignite | NOVA. The University of Newcastle''s Digital Repository[J]. 2014.
    [26] Solomon P R, Carangelo R M. FT-i.r. analysis of coal : 2. Aliphatic and aromatic hydrogen concentration[J]. Fuel, 1988,67(7):949-959.
    [27] Barlow A J, Popescu S, Artyushkova K, et al. Chemically specific identification of carbon in XPS imaging using Multivariate Auger Feature Imaging (MAFI)[J]. Carbon, 2016,107:190-197.
    [28] Li Z K, Wei X Y, Yan H L, et al. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015,153(aug.1):176-182.
    [29] Matthias, Thommes. Physisorption of gases, with special Reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Chemistry international, 2016.
    [30] Krooss B M, Bergen F V, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrate Pennsylvanian coals[J]. International Journal of Coal Geology, 2002,51(2):69-92.
    [31] 辛勤, 罗孟飞. 现代催化研究方法[J]. 科学出版社, 2009.(XIN Qin,LUO Meng-fei. Research methods of Modern Catalysis[M]. Science Press, 2009.)
    [32] Sing, Sw K. Reporting physisorption data for gas/solid systems with special Reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Applied Chemistry, 1985,57(4).
    [33] Zheling, Zhang, And, et al. Theoretical and practical discussion of measurement accuracy for physisorption with micro- and mesoporous materials - ScienceDirect[J]. Chinese Journal of Catalysis, 2013,34(10):1797-1810.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:420
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-08-27
  • 最后修改日期:2021-10-10
  • 录用日期:2021-10-12
文章二维码