高钢级山地管道设计及安全性评估的再认识
作者:
作者单位:

1.中国科学院山地灾害与地表过程重点实验室;2.中国石油工程建设有限公司西南分公司

中图分类号:

TH11

基金项目:

国家自然科学基金面上项目(编号:41671116)、国家石油天然气管网集团“十四五”重点工程“川气东送二线管道工程”资助项目,(编号:2020230C)


Re-recognition of design and safety evaluation of high-grade steel mountain pipeline
Author:
Affiliation:

1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences,;3.China petroleum engineering &4.construction southwest company

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • | | | |
  • 文章评论
    摘要:

    永久性地面变形(permanent ground deformation, PGD)是造成山地管道屈曲断裂泄露并导致重大生命、财产损失的主要原因之一。现有PGD区山地管道“基于应变”的设计及安全性评估方法和技术标准对在役高钢级管道安全性评估偏于危险,亟待对其进行进一步的研究。针对山地复杂PDG工况下的“许用应变”及“计算应变”,从山地管道的主要失效模式着手,对山地管道管-土相互作用的应变计算方法(解析法、数值分析法及试验法)及安全性评估方法的技术现状及存在问题进行了分析,并结合我国山地管道未来的发展趋势及生产需要,提出了考虑在役管道的实际工况,进行基于管-土相互作用规律的设计及安全性评估方法的研究路径和内容。

    Abstract:

    s: Permanent ground deformation (PGD) is one of the main causes of buckling, fracture and leakage of mountain pipeline and heavy loss of life and property.Design and safety evaluation of mountain pipelines in PGD zone with the existing “Strain-based method” and technical standards urgently awaiting further research figures out the dangerous statuses of in-service high-grade steel pipelines. The current situation of “strain-based” failure discrimination is firstly analyzed and summarized. Technical actualities and imperfections of strain calculation methods (analytical, numerical, and experimental methods) and safety evaluation methods for pipe-soil interaction are indicated by the main patterns of pipe failure with the "allowable strain" and "calculated strain" under complex PDG working conditions. Future research content and path of the design and safety evaluation based on actual work conditions and pipe-soil interactions are synthetically proposed, while considering the future development trend and production needs of mountain pipelines in China.

    参考文献
    [1] 中商华研研究院. 中国油气管道工程建设行业“十四五”前景规划与项目投资建议报告2021~2026年[R]. 北京: 中商华研研究院,2021.HINA Business Research Institute. China''s oil and gas pipeline construction industry in the “14th five year plan” prospect planning and project investment proposal report 2021-2026 [R]. Beijing: CHINA Business Research Institute,2021.
    [2] 罗志强, 夏敏, 敖波.山区天然气管道地质灾害防治工作思考[J].石化技术,2020, 27(01): 132-134.UO Zhiqiang, XIA Min, AO Bo. Considerations on prevention and control of natural gas pipeline geological disasters in mountainous areas[J]. Petrochemical Industry Technology,2020, 27(01): 132-134.
    [3] 张宏, 刘啸奔.地质灾害作用下油气管道设计应变计算模型[J].油气储运,2017, 36(001): 91-97.HANG Hong, LIU Xiaoben. Design strain calculation model for oil and gas pipelines subject to geological hazards [J]. Oil Gas Storage and Transportation, 2017, 36(001): 91-97.
    [4] 中国石油工程建设有限公司西南分公司. 提升油气长输管道本质安全研究报告[R]. 成都: 中国石油工程建设有限公司西南分公司,2018.hina petroleum engineering construction southwest company. Research Report on improving intrinsic safety of long distance oil and gas pipeline[R].Chengdu: China petroleum engineering construction southwest company,2018.
    [5] 黄维和, 郑洪龙, 李明菲.中国油气储运行业发展历程及展望[J].油气储运,2019, 38(01): 1-11.UANG Weihe, ZHENG Honglong, LI Mingfei. Development history and prospect of oil gas storage and transportation industry in China[J]. Oil Gas Storage and Transportation, 2019, 38(01): 1-11.
    [6] 辛艳萍.中国油气管道技术现状与发展趋势分析[J].天然气与石油,2020, 38(02): 26-31.IN Yanping. Current Situation and Development Trend of Oil and Gas Pipeline Technology in China[J].NATURAL GAS AND OIL,2020, 38(02): 26-31.
    [7] Det Norske Veritas As. Submarine pipeline systems: DNV-OSF101:2013[S].Oslo:DNV,2013.
    [8] National Standard of Canada. Oil and gas pipeline systems: CSA Z662:19[S].Toronto:Canadian Standards Association,2019.
    [9] 中华人民共和国住房和城乡建设部. 油气输送管道线路工程抗震技术规范: GB 50470-2017[S].北京:中国计划出版社,2017.inistry of housing and Urban-Rural Development of the PRC. Seismic technical code for oil and gas transmission pipeline engineering: GB 50470-2017[S]. Beijing: China planning Press,2017.
    [10] 中华人民共和国石油天然气行业标准. 油气输送管道应变设计规范: SY/T 7403-2018[S].北京:石油工业出版社,2018.ational Petroleum and Natural Gas Industry Standard of the PRC. Code for strain-based design of oil gas transmission pipelines. SY/T 7403-2018[S]. Beijing: Petroleum Industry Press,2018.
    [11] 李璞, 陶燕丽, 周建.基于应变设计管道局部屈曲应变极限值的计算[J].天然气工业,2013, 33(07): 101-107.I Pu,TAO Yanli,ZHOU Jian. A study of the ultimate compressive strain of local buckling in strain-based design of pipelines[J]. Natural Gas Industry,2013, 33(07): 101-107.
    [12] American Petroleum Institute. Line pipe: API 5L-2018[S].Washington, DC:API Publishing Services,2018.
    [13] ASME code for Pressure Piping. Pipeline Transportation Systems for Liquids and Slurries: ASME B31.4-2019[S].New York:The American Society of Mechanical Engineers,2019.
    [14] British standard. Gas supply systems-Pipelines for maximum operating pressure over 16 bar - Functional requirements: BS EN 1594:2009[S].Brussels:BSI standards limited,2009.
    [15] Committee on Gas and liquid Fuel Lifelines of the ASCE Technical Council on Lifeline Earthquake Engineering. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems: ASCE 1984[S].Virginia:American society of Civil Engineers,1984.
    [16] American Lifelines Alliance-American Society of Civil Engineers. Guidelines for the Design of Buried Steel Pipe (with addenda through February 2005): ALA-ASCE: 2005[S].USA:American society of Civil Engineers,2005.
    [17] Pipeline Research Council International. Guidelines for constructing natural gas and liquid hydrocarbon pipelines through areas prone to land slide and subsidence hazards: PRCI:2009[S].Texas:PRCI Inc,2009.
    [18] British standard. Eurocode 8-Design of structures for earthquake resistance: Part 4 Silos, tanks and pipelines: BS EN 1998-4:2006[S].Brussels:BSI standards limited,2006.
    [19] Spyros A. Karamanos, Sarvanis Gregory C., Keil Brent D., et al.Analysis and Design of Buried Steel Water Pipelines in Seismic Areas[J].Journal of Pipeline Systems Engineering and Practice,2017, 8(4):124-129.
    [20] Daniil Vasilikis, Karamanos Spyros, Van Es Sjors, et al.Ultimate bending capacity of spiral-welded steel tubes – Part II: Predictions[J].Thin-Walled Structures, 2016, 102(5):305-319.
    [21] A. M. Gresnigt, Van Es Sjors, Karamanos Spyros, et al. New design rules for tubes in combined walls in EN 993-5[J]. Ce/papers, 2017,1(9):116-128.
    [22] N. M. Newmark, Hall W. J.Pipeline Design to Resist Large Fault Displacements[R]. Michigan:Proceedings of U.S,1975.
    [23] R. P. Kennedy, Chow A. W., Williamson R. A. Fault movement effects on buried oil pipeline[J].Transportation Engineering Journal of Asce,1977, 103(5): 617-633.
    [24] L. R. L. Wang, Yeh Y. H. A refined seismic analysis and design of buried pipeline for fault movement[J].Earthquake Engineering Structural Dynamics,1985, 13(1): 75-96.
    [25] S. Takada, Hassani N., Fukuda K.A new proposal for simplified design of buried steel pipes crossing active faults[J].Earthquake Engineering Structural Dynamics,2001, 30(8): 1243-1257.
    [26] Dimitrios K. Karamitros, Bouckovalas George D., Kouretzis George P.Stress analysis of buried steel pipelines at strike-slip fault crossings[J].Soil Dynamics and Earthquake Engineering,2007, 27(3): 200-211.
    [27] Oleg Trifonov, V.P Cherniy.Elastoplastic stress-strain analysis of buried steel pipelines subjected to fault displacements with account for service loads[J].Soil Dynamics and Earthquake Engineering, 2012, 33(1):54-62.
    [28] 程旭东, 庞明伟, 徐立, 等.基于应变设计的跨斜滑断层埋地管道地震反应分析[J].天然气工业,2016, 36(10): 110-117.HENG Xudong, PANG Mingwei, XU Li, et al. Seismic response analysis of buried pipelines crossing oblique slip faults based on a strain design[J]. Natural Gas Industry, 2016, 36(10): 110-117.
    [29] Xiaoben Liu, Zhang Hong, Han Yinshan, et al.A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings[J].Journal of Natural Gas Science and Engineering,2016, 32(4): 465-475.
    [30] Farzad Talebi, Kiyono Junji.Introduction of the axial force terms to governing equation for buried pipeline subjected to strike-slip fault movements[J].Soil Dynamics and Earthquake Engineering, 2020, 133(6):106-125.
    [31] 张东臣, БыковЛ.И.滑坡条件下埋地管道受力分析[J].石油规划设计,2001,12(06): 1-3.HANG Dongcheng, БыковЛ.И.The Force-summing Analysis of Buried Pipeline under Landslide condition[J].Petroleum Planning Engineering, 2001,12(06): 1-3.
    [32] 尚玉杰, 王殿龙, 闫生栋, 等.横向滑坡作用下埋地管道力学响应分析[J].安全与环境工程,2019, 26(01): 155-161.HANG Yujie, WANG Dianlong, YAN Shengdong, et al. Mechanial Response Analysis of Buried Pipeline under the Action of Transverse Landslide[J].Safety and Environment Engineering, 2019, 26(01): 155-161.
    [33] Umer Zahid, Godio Alberto, Mauro Stefano.An analytical procedure for modelling pipeline-landslide interaction in gas pipelines[J].Journal of Natural Gas Science and Engineering,2020, 81(7):113-130.
    [34] Yun Mook Lim, Kim Moon Kyum, Kim Tae Wook, et al. The Behavior Analysis of Buried Pipeline: Considering Longitudinal Permanent Ground Deformation[C].Pipeline Division Specialty Conference,2001: 1-11.
    [35] Dimitrios K. Karamitros, Bouckovalas George D., Kouretzis George P.Stress analysis of buried steel pipelines at strike-slip fault crossings[J].Soil Dynamics and Earthquake Engineering, 2007, 27(3):200-211.
    [36] Xudong Cheng, Ma Chuan, Huang Runkang, et al.Failure mode analysis of X80 buried steel pipeline under oblique-reverse fault[J].Soil Dynamics and Earthquake Engineering, 2019, 125(10):105-115.
    [37] Gersena Banushi, Squeglia Nunziante, Thiele Klaus.Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement[J].Soil Dynamics and Earthquake Engineering,2018, 107(6): 234-249.
    [38] C. H. Trautmann, Orourke T. D.LATERAL FORCE-DISPLACEMENT RESPONSE OF BURIED PIPE[J].Journal of Geotechnical Engineering-Asce,1985, 111(9): 1077-1092.
    [39] Da Ha, Abdoun Tarek H., O''Rourke Michael J., et al.Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones[J].Journal of Geotechnical and Geoenvironmental Engineering,2008, 134(10): 1501-1515.
    [40] Tung-Wen Hsu.Rate effect on lateral soil restraint of pipelines[J].Soils and Foundations,1993, 33(4): 159-169.
    [41] T. W. Hsu, Chen Y. J., Wu C. Y.Soil friction restraint of oblique pipelines in loose sand[J].Journal of Transportation Engineering-Asce,2001, 127(1): 82-87.
    [42] Karimian H , D Wijewickreme, D Honegger. Buried Pipelines Subjected to Transverse Ground Movement: Comparison Between Full-Scale Testing and Numerical Modeling[C]// International Conference on Offshore Mechanics Arctic Engineering. 2006.
    [43] 王仁超. 滑坡作用下管道变形破坏机理试验研究[D].成都: 中国科学院、水利部成都山地灾害与环境研究所,2019.ANG Renchao. Experimental Study of Pipeline Deformation and Failure Mechanism under Landslide Action [D].Chengdu: Institute of Mountain Hazards and Environment ,Chinese Academy of Sciences,2019.
    [44] Research Fund for Steel and Coal (RFCS) GIPIPE project. Safety of buried steel pipelines under ground‐induced deformations. Final Report[R]. Brussels: Research Fund for Steel and Coal (RFCS) ,2015.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:491
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-09-01
  • 最后修改日期:2021-09-16
  • 录用日期:2021-10-08
文章二维码