锂电池电极纳米颗粒和粘结剂在充电放电循环中的应力计算
作者:
作者单位:

1.北京化工大学 机电工程学院;2.深圳吉阳智能科技有限公司

中图分类号:

TK01


Stress calculation of electrode nanoparticles and adhesives for Lithium-ion batteries during charge discharge cycles
Author:
Affiliation:

1.Beijing University of Chemical Technology,College of Mechanical Electrical Engineering,Beijing;2.Shenzhen Geesun Intelligent Technology Co Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    粘结剂作为锂电池电极制造的重要材料,它的用量虽少,却是极板力学性能的主要承担者。现有的复合电极力学行为模型多将粘结剂层假设为线弹性材料,这很难描述粘结剂层的复杂力学行为,因此为了深入理解极板纳米级颗粒与粘合剂在充放电过程的力学行为,根据已有的实验数据拟合了Neo-Hookean超弹性模型,采用与锂离子扩散方程形式相似的传热方程求解工具模拟活性硅颗粒在充电放电过程的应力变化,研究结果表明硅颗粒锂化时主要的塑性变形发生在第一个充电放电循环过程中,粘接层的最大应力变化类似纳米颗粒间的应力变化,随着粘结层厚度的增加,粘接层界面的最大应力会逐渐降低;还有,相近应变下Neo-Hookean超弹性模型对于粘结剂流变行为描述好于线弹性模型。

    Abstract:

    As an important material for lithium battery electrode manufacturing, adhesive is the main undertaker of the mechanical properties of electrode plate although its dosage is small. Most of the existing rheological models of composite electrode were assumed the binder layer as linear elastic material, which was difficult to describe the complex mechanical behavior of it. Therefore, in order to deeply understand the mechanical behavior of the electrode plate Nano particles and adhesive during the charge and discharge process, the Neo Hookean hyperelastic model was fitted based on the existing experimental data in literature. The results show that the main plastic deformation occurred during the first charge discharge cycle, and the maximum stress evolution of the bonding layer is similar to that of the nano particles. With the increase of the thickness of adhesive layer, the maximum stress at the interface of adhesive layer would decrease gradually.

    参考文献
    [1] 王晓钰,张渝,马磊等,锂离子电池硅基负极粘结剂发展现状[J],化学学报,2019,77(1):24-40
    [2] Lee Sang Ha Lee, Lee Jeong Hun Lee, Nam Dong Ho Nam, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-lon battery[J], ACS Applied Materials Interfaces, 2018,10(19):16449-16457.
    [3] Lee J H, Paik U, Hackley V A, et al. Effect of poly (acrylic acid) on adhesion strength and electrochemical performance of natural graphite negative electrode for lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(1): 612-616.
    [4] Park H -K, Kong B -S, Oh E- S. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries[J]. Electrochemistry Communications, 2011, 13(10): 1051-1053.
    [5] Yoo M, Frank C W, Mori S, et al. Effect of poly (vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery[J]. Polymer, 2003, 44(15): 4197-4204
    [6] Burnett P J, Rickerby D S. The relationship between hardness and scratch adhession[J]. Thin Solid Films, 1987, 154(1-2): 403-416.
    [7] Davanloo F, Collins C, Koivusaari K. Scratch adhesion testing of nanophase diamond coatings on steel and carbide substrates[J]. Journal of Materials Research, 1999, 14(8): 3474-3482.
    [8] Fu R, Xiao M, Choe S Y. Modeling of validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery[J]. Journal of power sources, 2013, 224(2):211-224
    [9] Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation [J], ACS Nano, 2012,6: 1522-1531
    [10] Hertzberg B, Alexeev A, Yushin G, Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space [J], Journal of the American Chemical Society, 2010,132: 8548-8549
    [11] Takahashi K, Higa K, Mair S, et al. Mechanical Degradation of Graphite/PVDF Composite Electrodes: A Model-Experimental Study[J]. Journal of The Electrochemical Society, 2016, 163(3): A385–A395.
    [12] Vinogradov A, Holloway F. Electro-mechanical properties of the piezoelectric polymer PVDF[J]. Ferroelectrics, 1999, 226(1): 169–181.
    [13] [139] Rakshit S, Tripuraneni R, Nadimpalli S P V. Real-time stress measurement in SiO2 thin films during electrochemical lithiation/delithiation cycling[J]. Experimental Mechanics, 2018, 58(12):537-547
    [14] [140] Aleksandra, Vinogradov, et al. Electro-mechanical properties of the piezoelectric polymer PVDF[J]. Ferroelectrics, 1999, 226(1):169-181
    [15] [151] Santimetaneedol A, Tripuraneni R, Chester S A, et. al. Time-dependent deformation behavior of polyvinylidene fluoride binder: Implications on the mechanics of composite electrodes[J]. Journal of Power Sources, 2016, 332(11):118-128
    [16] [162] Foster J M, Richardson G, Chapman S J, et al. A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes[J]. 2016, 77(6):2172-2198 of Power Sources, 2016, 332(nov.15):118-128
    [17] [173] Wang H, Nadimpalli S P V, Shenoy V B. Inelastic shape changes of silicon particles and stress evolution at binder/particle interface in a composite electrode during lithiation/delithiation cycling[J]. Extreme Mechanics Letters, 2016, 9:430-438
    [18] [184] Nguyen H T, Nguyen V T, Le M Q. Finite Element Analysis of the Lithium Diffusion in the Silicon Copper Nano-pillar[M]// Advances in Engineering Research and Application, Proceedings of the International Conference on Engineering Research and Applications, ICERA 2019. 2019:366-372
    [19] [195] Lee Seok Woo Lee, McDowell Matthew T,. McDowell, Berla Lucas A. Berla, et al., Fracture of Crystalline Silicon Nanopillars during Electrochemical Lithium Insertion[J]. PNAS, 2012,109(11): 4080-4085
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:513
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-09-05
  • 最后修改日期:2021-10-27
  • 录用日期:2021-10-27
文章二维码