随机风作用下同塔四回输电杆塔安全性研究
作者:
作者单位:

1.内蒙古电力经济技术研究院;2.重庆大学航空航天学院

中图分类号:

O342

基金项目:

内蒙古电力公司科技项目(2020-39)


Study on safety of four circuit transmission line tower under stochastic wind field
Author:
Affiliation:

1.Inner Mongolia Power Economy and Technology Research Institute;2.College of Aerospace Engineering,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • | | | |
  • 文章评论
    摘要:

    针对蒙西地区220kV同塔四回路典型输电线路段,采用有限元方法模拟研究杆塔在随机风作用下的结构强度和疲劳寿命。利用ABAQUS有限元软件建立塔线耦合体系有限元模型,考虑蒙西地区地形特点,采用数值方法模拟生成随机风场,计算塔线体系的动力响应。根据计算结果确定杆塔的危险区域,建立该局部三维实体有限元模型,并与其他部分的杆梁模型组合为实体与杆梁混合模型。提取塔线体系在随机风作用下导地线挂点的支反力时程曲线,模拟实体与杆梁混合模型的动力响应。模拟研究了两种风速和不同螺栓预紧力情况下杆塔结构强度,并分析了随机风激励下杆塔的疲劳寿命。结果表明,螺栓的松弛对杆塔强度和疲劳寿命影响明显,可能是引起杆塔破坏的主要原因。

    Abstract:

    With a typical section of 220kV four circuit transmission line in West Inner Mongolia, the structural strength and fatigue life of the towers under stochastic wind are numerically studied by means of the finite element (FE) method. The FE model of the tower-line system is established using the ABAQUS software. Considering the topographic characteristics of the West Inner Mongolia, stochastic wind fields are simulated numerically to calculate the dynamic response of tower-line system. According to dynamic responses of the tower-line system under wind load, the dangerous zone of the tower is determined and its 3D solid FE model is set up. A hybrid FE model combined the local 3D model with the spatial beam model of the other portion of the tower is constructed. The time histories of the reaction forces at hanging points of the conductors and ground wires are applied on the hybrid FE model of the tower to simulate its dynamic responses under wind load. The structural strength and fatigue life of the tower under two stochastic wind fields and with different bolt preloads are numerically investigated. The results show that the bolt looseness affect the strength and fatigue life of the tower obviously and may be one of the main reasons of tower failure.

    参考文献
    [1] DL-T 5551-2018, 架空输电线路载荷规范[S].北京:中国计划出版社,2018.
    [2] 郭勇,叶尹,应建国.多回路输电塔风振系数研究[J].建筑结构,2011,41(03):110-113.
    [3] 窦汉岭. 220kV大跨越转角输电线塔的力学分析[D].合肥工业大学,2019.
    [4] 原迁,张德凯.大跨越输电塔线体系风振响应及风振系数分析[J].山西建筑,2021,47(06):34-38.
    [5] 刘孟龙.复杂地形条件下输电塔线体系风致响应数值模拟[D].浙江大学,2020.
    [6] 齐立忠,江文强,陈大斌.螺栓连接滑移对输电铁塔力学性能的影响研究,电力科学与工程,2013,29(3):12-17.
    [7] 沈康.风荷载作用下输电杆塔连接节点承载性能研究[D].湖北工业大学,2019.
    [8] 严波,刘力宇,毕承财,吴天宝,刘凡,曹永兴.螺栓预紧力对输电杆塔强度的影响[J],重庆大学学报(自然科学版),2015,39(5):17-25
    [9] 陆兴华,刘建军,张廼龙,吴佰建,郭小明.考虑舞动和微风振动的复合横担疲劳评估[J].力学季刊,2020,41(04):704-717.
    [10] 孙中浩.特高压输电铁塔风振疲劳性能及典型焊接接头疲劳寿命研究[D].浙江大学,2015.
    [11] 胡位勇,严波,程皓月,郭跃明.输电塔线体系断线动力响应及杆塔破坏模拟研究,应用力学学报,2012,29(4):431-436.
    [12] Simiu E., Scanlan R. H., Wind effects on structures, 2rd edition, New York, John Wiley Sons, 1986.
    [13] B. Yan, X.S. Lin, W. Luo, Z.D. Chen, and Z.Q. Liu, “Numerical study on dynamic swing of suspension insulator string in overhead transmission line under wind load”, IEEE Transactions on Power Delivery, 2010, 25(1): 248-259.
    [14] 刘曦程,刘光连,聂振超,刘思聪.应力控制下的Q345钢疲劳寿命预测研究[J].塑性工程学报,2018,25(03):212-216.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:450
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-08
  • 最后修改日期:2021-11-16
  • 录用日期:2021-11-17
文章二维码