弹性半平面矩形夹杂基本单元解及其应用
作者:
作者单位:

1.重庆大学航空航天学院;2.重庆大学航空航天学院,机械传动国家重点实验室;3.机械传动国家重点实验室;4.机械传动国家重点实验室,哈尔滨工业大学理学院

中图分类号:

O343.1???? ?????????????

基金项目:

国家自然科学基金资助项目(51875059);重庆市科技计划项目(cstc2020jcyj-msxmX0850);重庆市研究生科研创新项目(CYS21011)。


Elementary solution of the elastic half-plane containing a rectangular inclusion: theory and applications
Author:
Affiliation:

1.College of Aerospace Engineering, Chongqing University;2.College of Aerospace Engineering, Chongqing University,State Key Laboratory of Mechanical Transmissions;3.State Key Laboratory of Mechanical Transmissions;4.School of Science, Harbin Institute of Technology

Fund Project:

National Natural Foundation of China ; Chongqing City Science and Technology Program ; Graduate Research and Innovation Foundation of Chongqing

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    工程材料中存在的夹杂通常会对基体材料的弹性场产生扰动,当夹杂位于表界面附近时,夹杂与表界面的相互作用往往导致问题的解析求解变得复杂、困难。推导了二维半平面基体中矩形夹杂所致位移和应力场的基本单元解,用于通过“离散-迭加”来求解半无限平面含任意形状夹杂的弹性场。与之相比,传统的有限元法需要在远大于夹杂尺寸的半无限大基体域上进行网格划分,并且需要在夹杂/基体界面处细化网格以满足计算精度要求。提出了半解析算法,基于矩形夹杂单元封闭解,只需对夹杂区域进行离散,可有效提高计算效率。以半平面基体中含正六边形和圆形夹杂为例,该方法与有限元软件得到的结果进行对比,验证了基于单元解的半解析数值算法的正确性与有效性。

    Abstract:

    Inclusions in engineering materials will create a disturbance to the elastic fields. When an inclusion is located in the vicinity of the surface, the interactions between the inclusion and the surface are often difficult to be solved analytically. The elementary solutions of the displacements and stresses caused by a rectangular inclusion contained in an elastic half-plane are derived in closed-form. Accordingly, the resultant elastic fields produced by any arbitrarily shaped inclusion may be solved through a "discretization-superposition" scheme. In contrast, the traditional Finite Element Method needs to mesh the semi-infinite matrix region which is much larger than the size of the inclusion, while the mesh needs to be sufficiently refined at the inclusion/matrix interface to attain a satisfactory accuracy. By taking advantages of the elementary solutions of rectangular inclusion, the proposed semi-analytical method merely performs the numerical discretization within the inclusion region, leading to remarkable savings on the meshing efforts and memory storage. Benchmark examples are reported for an elastic half-plane containing either regular hexagonal or circular inclusion, and the results are validated with those obtained by the commercial Finite Element software to show the correctness and effectiveness of this proposed semi-analytical method.

    参考文献
    [1] Mura T. Micromechanics of defects in solids[M]. Springer, Dordrecht, 1987.
    [2] Cheng H C, Tai L C, Liu Y C. Theoretical and experimental investigation of warpage evolution of flip chip package on packaging during fabrication[J]. Materials, 2021, 14(17): 4816.
    [3] 黄涛, 廖秋慧, 吴文云, 等. 叠层芯片结构QFN封装导电胶分层失效行为分析[J]. 电子元件与材料, 2020, 39(9): 97-104.Huang T, Liao Q H, Wu W Y, et al. Analysis of delamination failure behavior of QFN packaging conductive adhesive with laminated chip structure[J]. Electronic Components Materials, 2020, 39(9): 97-104. (in Chinese)
    [4] 朱诚意, 罗小燕, 李光强, 等. 无取向硅钢中含镁夹杂物的形成机理分析[J]. 重庆大学学报, 2018, 41(8): 34-43.Zhu C Y, Luo X Y, Li G Q, et al. Formation mechanism analysis on magnesium-bearing inclusions in non-oriented silicon steels[J]. Journal of Chongqing University, 2018, 41(8): 34-43. (in Chinese)
    [5] He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.
    [6] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1957, 241(1226): 376-396.
    [7] Chiu Y P. Stress-field due to initial strains in a cuboid surrounded by an infinite elastic space[J]. Journal of Applied Mechanics-Transactions of the ASME, 1977, 44(4): 587-590.
    [8] Chiu Y P. On the Stress-Field and Surface Deformation in a half space With a Cuboidal Zone in Which Initial Strains Are Uniform[J]. Journal of Applied Mechanics, 1978, 45(2): 302-306.
    [9] Chiu Y P. On the Internal Stresses in a Half Plane and a Layer Containing Localized Inelastic Strains or Inclusions[J]. Journal of Applied Mechanics, 1980, 47(2): 313-318.
    [10] Hu S M. Stress from a parallelepipedic thermal inclusion in a semispace[J]. Journal of Applied Physics, 1989, 66(6): 2741-2743.
    [11] Ru C Q. Analytic solution for Eshelby''s problem of an inclusion of arbitrary shape in a plane or half-plane[J]. Journal of Applied Mechanics, 1999, 66(2): 315-523.
    [12] Jin X Q, Keer L M, Wang Q. New Green’s function for stress field and a note of its application in quantum-wire structures[J]. International Journal of Solids and Structures, 2009, 46(21): 3788-3798.
    [13] Jin X Q, Keer L M, Wang Q. A closed-form solution for the Eshelby tensor and the elastic field outside an elliptic cylindrical inclusion[J]. Journal of Applied Mechanics, 2011, 78(3): 031009-1-031009-6.
    [14] Jin X Q, Zhang X, Li P, et al. On the displacement of a two-dimensional Eshelby inclusion of elliptic cylindrical shape[J]. Journal of Applied Mechanics, 2017, 84(7): 074501-1-074501-6.
    [15] Li P, Zhang X N, An Y H, et al. Analytical solution for the displacement of a polygonal inclusion with a special application to the case of linear eigenstrain[J]. European Journal of Mechanics - A/Solids, 2020, 84: 104049.
    [16] Liu S B, Jin X Q, Wang Z J, et al. Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT[J]. International Journal of Plasticity, 2012, 35: 135-154.
    [17] 金晓清, 牛飞飞, 张睿, 等. 均布激励基本单元解析解的一种记号方法[J]. 上海交通大学学报, 2016, 50(8): 1221-1227.Jin X Q, Niu F F, Zhang R, et al. A notation for elementary solution to uniformly distributed excitation over a rectangular/cuboidal domain[J]. Journal of Shanghai Jiaotong University, 2016, 50(8): 1221-1227. (in Chinese)
    [18] Sun L, Wang Q, Zhang M, et al. Discrete convolution and FFT method with summation of influence coefficients (DCS–FFT) for three-dimensional contact of inhomogeneous materials[J]. Computational Mechanics, 2020, 65:1509 -1529.1
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:293
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-02-23
  • 最后修改日期:2022-04-07
  • 录用日期:2022-04-08
文章二维码