基于k-means聚类的烟标色差在线检测方法
作者单位:

昆明理工大学

中图分类号:

TP391.4???

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


On-line detection method of cigarette case chromatic aberration based on k-means clustering
Author:
Affiliation:

College of Mechanical and Electrical Engineering,Kunming University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对品检机上的小盒烟标的色差在线检测存在速度慢的问题,提出了一种基于k-means聚类的烟标色差在线检测方法。该方法基于图像处理和机器视觉,通过对CCD相机采集到的标准样张和待检测烟标的主背景色进行识别,然后通过颜色空间转换,最后进行色差的检测,色差小于4.0的为合格烟标。实验结果表明,由于不需要背景去除和图像配准,该方法检测速度优于其他算法,且准确率能够满足实际生产需要。

    Abstract:

    Aiming at the problem that the online detection of chromatic aberration of small box cigarette case on the quality inspection machine is slow, an online detection method of cigarette label chromatic aberration based on k-means clustering is proposed. Based on image processing and machine vision, this method identifies the standard sample collected by the CCD camera and the main background color of the cigarette scale to be detected, and then converts through the color space, and finally performs the detection of chromatic aberration, and the chromatic aberration is less than 4.0 for the qualified cigarette case. Experimental results show that because there is no need for background removal and image registration, the detection speed of this method is better than that of other algorithms, and the accuracy can meet the actual production needs.

    参考文献
    [1] 张洋,普杰信,梁灵飞,张蕾.基于超像素的印刷品色差在线检测方法[J].测控技术,2017,36(09):54-59.
    [2] 李海山,唐海艳,梁栋,韩军.基于卷积神经网络的印刷品颜色缺陷检测[J].包装工程,2021,42(23):170-177.
    [3] Skwirczyński Maciej,Wojciechowski Wadim,Skomorowski Marek. Harnessing convolutional neural networks to find regions of interest on feet X-rays images[J]. Biomedical Signal Processing and Control,2021,69.
    [4] Linga Murthy Narlagiri,S. Venugopal Rao. Correction to: Identification of metals and alloys using color CCD images of laser?induced breakdown emissions coupled with machine learning[J]. Applied Physics B,2020,126(8):付正广.计算机图像处理与识别技术的应用研究[J].黑龙江科学,2021,12(24):110-112.
    [5] [1]Yang Hongwei,Hui Shuai. Research on Workpiece Assembly Application Based on Machine Vision[J]. Journal of Physics: Conference Series,2021,1961(1).
    [6] X. Yuan,J. Tian,P. Reinartz. GENERATING ARTIFICIAL NEAR INFRARED SPECTRAL BAND FROM RGB IMAGE USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORK[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,2020,V-3-2020.
    [7] Automatic Segmentation of Natural Color Images in CIE Lab Space using Possibilistic Fuzzy C Means Clustering[J]. International Journal of Innovative Technology and Exploring Engineering,2019,8(9).
    [8] 李贞,刘海燕,刘策,李庆钰,刘刚. Research on K-Means Clustering Optimization Algorithm Based on Machine Learning[J]. 数据挖掘,2021,12(01).
    [9] Goh Clarence,Lee Benjamin,Pan Gary,Seow Poh Sun. Forensic analytics using cluster analysis: Detecting anomalies in data[J]. Journal of Corporate Accounting Finance,2021,32(2).
    [10] Huang Min Liu Haoxue Luo M. Ronnier Cui Guihua. Testing Uniform Colour Spaces Using Printed Samples[J]. Color and Imaging Conference,2010,2010(1).
    [11] 李瑞娟,邓倩.基于三维查找表的RGB到XYZ颜色空间转换的研究[J].包装工程,2012,33(13):116-119.
    [12] 刘浩学,崔桂华,黄敏,武兵,刘瑜. 印刷图像色差阈值的研究[C]//2013中国食品包装学术会议论文摘要集.[出版者不详],2013:118-119.
    [13] Miguel A. Molina-Cabello,Jorge García-González,Rafael M. Luque-Baena,Ezequiel López-Rubio. The effect of downsampling–upsampling strategy on foreground detection algorithms[J]. Artificial Intelligence Review,2020(prepublish).
    [14] 陈升,李智.基于逐像素概率预测的图像隐写定位研究[J/OL].算机工程与应用:1-10[2022-02-26].
    [15] 蔡咏梅,郭文强,张琳琳.RGB空间平均颜色矢量法在颜色识别中的研究[J].计算机应用与软件,2014,31(05):177-179.
    [16] 陈鹏翔,杨晟院.区域拟合的背景去除图像分割模型[J].中国图象图形学报,2016,21(06):683-690.
    [17] Yonghua Shi,Xishun Jiang,Shukun Li. Fusion algorithm of UAV infrared image and visible image registration[J]. Soft Computing,2021(prepublish).
    [18] 赵宇晴,陈广胜,景维鹏.对简单线性迭代聚类算法改进的遥感影像超像素分割方法[J].东北林业大学学报,2020,48(11):66-71.创新点说明:本文针对烟标图像的在线色差检测,提出了一种新的色差在线检测方法。该方法基于k-means聚类方法识别主背景色,并对主背景色进行色差检测,该方法不需要背景去除和图像配准。该方法在检测速度和准确率上都能满足实际生产中的需求,且综合考量,优于逐像素检测,超像素检测和颜色平均值检测。
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:98
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-03-01
  • 最后修改日期:2022-07-18
  • 录用日期:2022-09-08
文章二维码