壳体柔性对风电齿轮箱-发电机集成系统动态特性影响
作者单位:

重庆大学

基金项目:

国家重点研发计划(2018YFB2001601)


Study on dynamic characteristics of a gearbox - generator integrated system with housing flexibility
Affiliation:

ChongQing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的:随着风力发电机单容量装机的增大,以提高功率密度为目标的传动系统轻量化设计所带来的安全性能问题受到了广泛关注;针对现如今风电传动系统的高度集成化设计而言,不仅要考虑外部随机风载所产生的多变激励的影响,同时还要考虑机械-电磁的内部激励因素;因此开展风电传动系统的机电-刚柔相互耦合作用研究尤为重要。本文通过构建集成系统模型,探究系统的机电-刚柔耦合特性。 方法:本文针对风电传动系统集成化结构,提出了一种可用于风力发电机变速-变载工况下的机电-刚柔耦合动力学模型,不仅考虑了齿轮的时变啮合刚度、相位关系、轴和壳体的结构柔性等机械因素,同时计入了发电机系统中永磁体磁饱和特性、电磁径向力波以及空间谐波等电磁因素。采用Runge-Kutta法对动力学模型进行求解。首先探究齿轮箱-发电机集成系统机电耦合动态特性,讨论了壳体柔性对系统动态特性的影响。其次提出了一种升速分析法,找寻了系统的共振转速。最终结合模态能量法和阵型矢量分布原理,找寻了共振时的潜在危险构件。 结果:通过研究表明:齿轮系统的动态啮合力中不仅存在各级齿轮系统的啮合频率(fm),同时存在发电机电磁激励频率(fe)。发电机振动信号、输出电流以及电磁转矩中均包含齿轮系统啮合频率(fm)、电磁激励频率(fe)以及两者的调制频率(nfm+mfe)。壳体壁厚的增大,增强了系统的机电耦合作用。壁厚的改变对齿轮-发电机扭转特性的影响较小;主要影响了齿轮系统各构件的平移振动特性。薄壁壳体下,出现了由发电机电磁激励所引起的新的共振转速。壳体壁厚增加后,系统的模态应变能发生了改变,有效改善了内啮合应变能对内齿圈和行星轮带来的损伤。 结论:齿轮系统与发电机系统存在强耦合特性,壳体壁厚的改变,加强了机电交互作用。电流信号中所出现的齿轮频率成分以及含有齿轮频率下调制频率成分的现象,可用于检测齿轮系统的运行特性和故障诊断。针对集成化系统而言,在壳体壁厚设计时,需综合考虑发电机电磁激励和齿轮系统内激励特性对系统共振的影响。选择合理的壁厚可有效提高系统的安全可靠性,减少共振区域,降低系统构件的损坏。

    Abstract:

    Objective: With the increase of wind turbine single capacity installation, the safety performance problems brought by the lightweight design of transmission system aiming at improving power density have been widely concerned. In view of the highly integrated design of wind power transmission system, not only the influence of variable excitation caused by external random wind load, but also the mechanical and electromagnetic internal excitation factors should be considered. Therefore, it is particularly important to study the electromechanical rigid-flexible interaction of wind power transmission system. In this paper, the electromechanical rigid-flexible coupling characteristics of the integrated system are explored by constructing an integrated system model. Methods: In this paper, aiming at the integrated structure of wind turbine transmission system, an electromechanical rigid-flexible coupling dynamics model is proposed which can using for variable-load and variable-speed condition. This model not only takes into account the mechanical factors such as time-varying meshing stiffness of gears, phase relationship, structural flexibility of shaft and shell, but also considered electromagnetic factors as saturation characteristics of permanent magnet, radial force wave and space harmonic wave. Runge-Kutta method was used to solve the dynamic model. The electromechanical coupling dynamic characteristics of the gearbox-generator integrated system are studied, the influence of housing flexibility on the dynamic characteristics of the system is discussed, and the speed-up analysis method is proposed to discuss the resonance speed of the system. Finally combined with modal energy method and vector distribution principle, the potential dangerous components in resonance are found. Results: The results show that the meshing frequency (fm) and the electromagnetic excitation frequency (fe) in the dynamic meshing force of the gear system. The generator vibration signal, output current and electromagnetic torque all contain the gear system meshing frequency (fm), electromagnetic excitation frequency (fe) and their modulation frequency (nfm+mfe). The increase of housing wall thickness enhances the electromechanical coupling effect of the system. The change of housing thickness has little effect on the torsional characteristics of the gear generator. It mainly affects the translational vibration characteristics of each component of the gear system. When the system using thin - walled housing, a new resonant speed caused by the electromagnetic excitation of the generator appears. When the housing wall thickness increases, the modal strain energy of the system changes, which effectively improves the damage caused by the planet-ring meshing strain energy of the inner gear ring and the planetary gear. Conclusion: The gear system and generator system have strong coupling characteristics, and the change of housing thickness strengthens the electromechanical interaction. The gear frequency component and the modulation frequency component in the current signal can be used to detect the operating characteristics and fault diagnosis of the gear system. For the integrated system, the influence of generator electromagnetic excitation and gear system excitation characteristics on system resonance should be considered in the design of housing thickness. Selecting reasonable housing thickness can effectively improve the safety and reliability of the system, reduce the resonance area and reduce the damage of system components.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-06-15
  • 录用日期:2022-06-20
文章二维码