暴力注入攻击对电力系统状态估计的影响
DOI:
CSTR:
作者:
作者单位:

重庆大学

作者简介:

通讯作者:

中图分类号:

基金项目:

“国家十三五密码发展基金”重点专项项目;国网四川省电力公司电力科学研究院项目


Impact of violence injection attack on power system state estimation
Author:
Affiliation:

Chongqing University

Fund Project:

Key special projects of national 13th five year password development fund; Project of Electric Power Research Institute of State Grid Sichuan Electric Power Company

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着社会的不断发展以及信息技术的不断进步,人们对于电力能源的需求越来越大。同时,随着各国对于可再生能源的大力推进,也进一步加强了电力规模的增长。传统的电力系统已经不再能够满足当今电力产业的需要,智能电网的概念也开始被不断的提出。已有研究表明,攻击者可以对智能电网电力系统发起注入攻击,从而影响电力系统状态估计的正常工作。本文提出了一种无电力系统拓扑信息情况下基于随机数的暴力注入攻击方法。并分别在基于加权最小二乘状态估计和基于卡尔曼滤波状态估计中,研究了所提攻击方法对智能电网电力系统状态估计的影响。并在IEEE-14bus仿真系统上进行了仿真实验,模拟了攻击者对电力系统的攻击,并对两种不同的状态估计进行了分析讨论。

    Abstract:

    With the continuous development of society and the continuous progress of information technology, people's demand for electric energy is increasing. At the same time, with the vigorous promotion of renewable energy in various countries, the growth of power scale has been further strengthened. The traditional power system can no longer meet the needs of today's power industry, and the concept of smart grid has been put forward. Previous studies have shown that attackers can launch injection attacks on smart grid power system, thus affecting the normal operation of power system state estimation. This paper presents a random number based violence injection attack method without power system topology information. The influence of the proposed attack method on the state estimation of smart grid power system is studied in the state estimation based on weighted least squares and Kalman filter. The simulation experiment is carried out on the ieee-14bus simulation system to simulate the attacker's attack on the power system, and two different state estimates are analyzed and discussed.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-15
  • 最后修改日期:2022-10-09
  • 录用日期:2022-10-25
  • 在线发布日期:
  • 出版日期:
文章二维码