创新点:1. 揭示了应力波关于主波和次波任意入射和反射的界面效应2. 建立了包含二阶混合差分格式的波动变量迭代格式
作者:
作者单位:

重庆大学航空航天学院

中图分类号:

O347

基金项目:

国家自然科学基金( 11772071; U1830115;)


Propagation and reflection of stress wave about primary and secondary waves in rectangular plates
Author:
Affiliation:

1.重庆大学航空航天学院;2.College of Aerospace Engineering,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    弹性应力波的修正理论指出关于体积应变的波动方程与现有理论一致,但发展了另一个关于体积应变和偏应变的弱耦合波动方程。针对矩形板受侧向集中载荷冲击下应力波的波动问题,建立了应力波传播的两组控制方程以及加载面和自由面的波动边界条件。采用有限差分方法求解波动方程,数值分析了应力波关于主波和次波的传播以及自由面上斜入射波的反射过程。偏应变在传播过程中分裂为两部分,一部分与体积应变共同传播组成主波,另一部分传播较慢形成次波。数值模拟结果显示与冲击载荷下纳钙玻璃板中应力波的传播图像是完全符合的。

    Abstract:

    The modified theory of elastic stress waves states that the wave equations on volume strain are consistent with existing theories, but a set of weakly coupled wave equations on volume strain and partial strain has been developed. Aiming at the fluctuation problem of stress wave under the impact of concentrated load on rectangular plate, two sets of control equations for stress wave propagation and the fluctuation boundary conditions of loading surface and free surface are established. The finite difference method is used to solve the wave equation, and the stress wave is simulated numerically for the propagation of the main and secondary waves and the reflection process of oblique incident waves on the free plane. The partial strain splits into two parts during propagation, one part propagates together with the volume strain to form the main wave, and the other part propagates slower to form a secondary wave. The numerical simulation results show that the propagation image of the stress waves in the nanocalcium glass plate under shock load is completely consistent.

    参考文献
    [1] 吴点宇, 李鑫, 张小刚等. 观察探测装置用透明装甲材料的设计研究[J/OL]. 兵器材料科学与工程: 1-6 [2022-05-27]. DOI: 10.14024/j.cnki.1004-244x.20220318.08.
    [2] McCauley J, et al. Experimental Observations on Dynamic Response of Selected Transparent Armor Materials[J]. Experimental Mechanics: an international journal, 2013,53(1): 3-29.
    [3] 金键, 侯海量, 吴梵等. 战斗部近炸下防护液舱破坏机理分析[J]. 国防科技大学学报, 2019, 41(2): 163-169.
    [4] 冯爱新, 聂贵锋, 薛伟等. 2024铝合金薄板激光冲击波加载的实验研究[J]. Issues in mental health nursing, 2012, 48(2): 205-210.
    [5] Neckel,Leandro, et al. Modelling of Ballistic Impact over a Ceramic-Metal Protection System[J]. Advances in materials science and engineering, 2013: 1-8.
    [6] Ogawa K. Impact friction test method by applying stress wave[J]. Experimental Mechanics: an international journal, 1997, 37(4): 398-402. [J]. 中南大学学报:英文版,2020,27(2):592-607.
    [7] 余同希, 邱信明编著. 冲击动力学[M].清华大学出版社,2011.
    [8] Ibragimov R N. Applications of Lie group analysis in geophysical fluid dynamics[M]. World Scientific, 2011.
    [9] 吴家龙. 弹性力学[M]. 高等教育出版社, 2001.
    [10] 王礼立. 应力波基础. 第2版[M]. 国防工业出版社, 2005.
    [11] J D, Achenbach. Wave Propagation in Elastic Solids[M]. North Holland, 1973.
    [12] Karl F Graff. Wave motion in elastic solids[M]. Clarendon Press, 1975.
    [13] Marc, Meyers.Dynamic Behavior of Materials[M]. John Wiley Sons, Inc. 1994.
    [14] H Kolsky. Stress waves in solids[M], 1953.
    [15] 黄克智, 薛明德, 陆明万. 张量分析(第3版)[M]. 清华大学出版社, 2020.
    [16] 颜世军, 刘占芳. 修正的偶应力线弹性理论及广义线弹性体的有限元方法[J]. 固体力学学报, 2012, 33(3): 279-287.
    [17] Liu Zhanfang, Fu Zhi. Scale effects of the stress symmetry in generalized elasticity. International Journal of Aerospace and Lightweight Structures, 2012, 2(4):509-521
    [18] TarabaySAntoun, DonaldSR.SCurran,SergeySV, et al. Spall Fracture[M]. Springer, New York, NY,2002.
    [19] Mikhailova N, et al. Effect of Impact Time Parameters on the Dynamic Strength in Spall Fracture[J]. Physical mesomechanics,2021, 24(1): 9-13.
    [20] 刘占芳, 冯晓伟, 张凯等. 氧化铝陶瓷动态压缩强度的高压和高应变率效应[J]. 功能材料, 2010, 41(12): 2087-2090.
    [21] 刘占芳, 常敬臻, 唐录成等. 平面冲击波压缩下氧化铝陶瓷的动态强度[J]. 格言, 2007,21(2):129-135.
    [22] Grujicic M, et al. A simple ballistic material model for soda-lime glass[J]. International Journal of Impact Engineering, 2009, 36(3): 386-401.
    [23] N Kawai S, et al. Stress Wave and Damage Propagation in Transparent Materials Subjected to Hypervelocity Impact[J]. 12th International Conference On Hydroinformatics-Smart Water For The Future, 2015, 103:287-293.
    [24] 刘占芳, 郭原, 唐少强等. 弹性应力波的双脉冲结构与平板冲击试验验证[J].应用数学和力学, 2018,39(3): 249-265.
    [25] 范镜泓. 非线性连续介质力学基础[M]. 重庆:重庆大学出版社,1987. 35-52.S
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-30
  • 最后修改日期:2022-06-21
  • 录用日期:2022-07-04
文章二维码