考虑多特征重要性和引入自监督预训练的TabNet-LSTNet短期负荷预测方法
作者单位:

1.广东工业大学;2.广东浩迪创新科技有限公司

基金项目:

国家自然科学基金资助项目(61571140)


A TabNet-LSTNet short-term load forecasting method considering multi-feature importance and introducing self-supervised pre-training
Author:
Affiliation:

1.Guangdong University of Technology;2.Guangdong Haodi Innovation Technology Co . , Ltd

Fund Project:

Supported by National Natural Science Foundation of China (61571140)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    为了挖掘负荷预测中不同输入特征的重要性,有效处理负荷数据中的线性成分和非线性成分,提高负荷预测的精度,文中提出一种基于TabNet和LSTNet(long and short-term temporal networks,长期和短期时间序列网络)的组合负荷预测模型。首先,通过引入自监督预训练来提高TabNet的预测精度,通过训练得到输入特征的全局重要性和预测结果,然后把重要性高的特征输入到LSTNet训练得出预测结果,最后通过方差-协方差组合方法得出TabNet-LSTNet模型的预测结果。通过仿真分析,与传统的LSTM(Long Short-Term Memory,长短期记忆网络)、极端梯度提升机(Xgboost)、轻量级梯度提升机(Lightgbm)和其它组合模型相比较,文中提出的TabNet-LSTNet模型具有更高的精度。

    Abstract:

    In order to explore the importance of different input features in load forecasting, effectively handle the linear and nonlinear components in load data, and improve the accuracy of load prediction, a combined load prediction model based on TabNet and LSTNet is proposed in this paper. First, the prediction accuracy of TabNet is improved by introducing self-supervised pre-training, and then the global importance of the input features and the prediction results are obtained by training. Next, the features with high importance are input to LSTNet, which is trained to get the prediction results. Finally, the prediction results of the combined model are derived by the method of variance-covariance combination. Through simulation analysis, the proposed combined model has higher accuracy compared with traditional LSTM, Xgboost, Lightgbm and other combined models.

    参考文献
    [1] 焦筱悛, 徐青山. 电力系统单用户超短期负荷预测算法研究[J]. 电测与仪表, 2020, 57(1):7.
    Jiao Xiaoquan,Xu Qingshan. A new ultra-short-term load forecasting algorithm for single user in power system[J]. Electrical Measurement Instrumentation, 2020, 57(1):7.(in Chinese)
    [2] Wang Y, Sun S, Chen X, et al. Short-term load forecasting of industrial customers based on SVMD and XGBoost[J]. International Journal of Electrical Power Energy Systems, 2021, 129: 106830.
    [3] LOPEZ J C ,RIDER M J,WU Q.Parsimonious short-term load forecasting for optimal operation planning of electrical distribution systems[J]. IEEE Transactions on Power Systems, 2019, 34(2):1427-1437.
    [4] Massaoudi M, Refaat S S, Chihi I, et al. A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for short-term load forecasting[J]. Energy, 2021, 214: 118874.
    [5] Fang Jun-long,Xing Yu,Fu Yu,Xu Yang,Liu Guo-liang. Rural power system load forecast based on principal component analysis[J]. Journal of Northeast Agricultural University (English Edition), 2015, 22(2): 67-72.
    [6] JI P ,XIONG D ,WANG P , et al. A study on exponential smoothing model for load forecasting[C]// Asia-pacific Power Energy Engineering Conference. IEEE, 2012.
    [7] ZHU X ,MIN S . Based on the arima model with grey theory for short term load forecasting model[C]// 2012International Conference on Systems and Informatics (ICSAI2012). IEEE, 2012.
    [8] 徐晴, 周超, 赵双双,等. 基于机器学习的短期电力负荷预测方法研究[J]. 电测与仪表, 2019, 56(23):6.
    Xu Qing, Zhou Chao, Zhou Shuangshuang,et al. Research on short-term power load forecasting method based on machine learning[J]. Electrical Measurement Instrumentation, 2019, 56(23):6.(in Chinese)
    [9] 陆继翔,张琪培,杨志宏,涂孟夫,陆进军,彭晖. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019,43(8):131-137.Lu Jixiang, Zhang Qipei, Yang Zhihong, et al. Short-term load forecasting method based on cnn-lstm hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137.(in Chinese)
    [10] 杨修德,王金梅,张丽娜,杨国华,李冰轩. 基于XGBoost的多维度超短期负荷预测研究[J]. 电气自动化, 2019, 041(1):32-34.Yang Xiude, Wang Jinmei, Zhang Lina, Yang Guohua1, et al. Multi-dimensional ultra-short load forecasting based on xgboost[J]. Power System Automation, 2019, 041(001):32-34.(in Chinese)
    [11] 陈剑强,杨俊杰,楼志斌.基于XGBoost算法的新型短期负荷预测模型研究[J].电测与仪表,2019,56(21):23-29.Chen Jianqiang, Yang Junjie, Lou Zhibin. A new short load forecasting model based on xgboost algorithm[J]. Electrical Measurement Instrumentation, 2019, 56(21):7.(in Chinese)
    [12] 孙超,吕奇,朱思曈,郑薇,曹云飞,王俊.基于双层XGBoost算法考虑多特征影响的超短期电力负荷预测[J].高电压技术,2021,47(08):2885-2898.
    Sun Chao, Lu Qi , Zhu Sitong, et al. Ultra-short-term power load forecasting based on two-layer xgboost algorithm considering the influence of multiple features[J]. High Voltage Engineering, 2021, 47(8):11.(in Chinese)
    [13] 陈纬楠,胡志坚,岳菁鹏,杜一星,齐祺. 基于长短期记忆网络和LightGBM组合模型的短期负荷预测[J]. 电力系统自动化, 2021, 45(4): 91-97.Chen Weinan, Hu Zhijian , Yu Qingpeng, et al. Short-term load prediction based on combined model of long short-term memory network and light gradient boosting machine[J]. Automation of Electric Power Systems, 2021, 45(4):7.(in Chinese)
    [14] ? ARIK S O, PFISTER T. Tabnet: Attentive interpretable tabular learning[C]//AAAI. 2021, 35: 6679-6687.
    [15] LAI G, CHANG W C, YANG Y, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research Development in Information Retrieval. 2018: 95-104.
    [16] 朱国森. 基于Stacking与Prophet组合模型的短期电力负荷预测[D].安徽理工大学,2021.br />Zhu Guosen. Short-term power load forecasting based on the combined model of stacking and prophet.[D]. Anhui University of Science and Technology, 2021.
    [17] 唐祥玲,王平,李思岑,白朝元.基于方差-协方差组合预测的中长期电力负荷预测研究[J].电气技术,2015(01):15-18.
    Tang Xiangling ,Wang Ping Li, Sicen Bai ,Chaoyuan. Research on Medium and Long-term Electric Load Forecasting Based on Variance-covariance Combined Model[J]. Electrical Engineering, 2015(01):15-18.(in Chinese)
    [18] WANG Y,J CHEN,CHEN X, et al. Short-term load forecasting for industrial customers based on tcn-lightgbm[J]. IEEE Transactions on Power Systems, 2020, PP(99).(编辑 )
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:2022-11-04
  • 录用日期:2022-12-02
文章二维码