喷油润滑下PEEK齿轮的疲劳失效临界转变关系
作者:
中图分类号:

TH132.417

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Critical transition relations for fatigue failure of PEEK gear under oil injection lubrication
Author:
Fund Project:

The National Key Technologies R&D Program of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • | | | |
  • 文章评论
    摘要:

    聚醚醚酮(PEEK)齿轮是高性能聚合物齿轮,广泛应用于汽车、无人机、机器人等领域。然而PEEK齿轮失效机理复杂、失效形式随载荷变化,导致其在动力传动场合应用时缺乏合理的设计依据。针对PEEK齿轮失效机理不明和失效形式转变的问题,开展了喷油润滑下PEEK齿轮副疲劳性能试验,计算了PEEK齿轮接触应力和弯曲应力,并通过扫描电镜等设备进行了失效表征。试验发现,喷油润滑下PEEK齿轮失效形式主要为齿面点蚀和齿根疲劳断裂,讨论了喷油润滑下PEEK齿轮齿面点蚀与齿根疲劳断裂的失效机理,发现了PEEK齿轮接触疲劳失效与弯曲疲劳失效之间的临界转变关系,并提出了PEEK齿轮失效形式的评估方法。当PEEK齿轮接触应力与弯曲应力之比低于1.02时,PEEK齿轮主要发生齿根疲劳断裂;接触应力与弯曲应力之比高于1.1时,PEEK齿轮主要发生齿面点蚀破坏;而PEEK齿轮接触应力与弯曲应力之比在1.02-1.1之间时,存在齿面接触疲劳与齿根弯曲疲劳的临界失效转变点。

    Abstract:

    Polyetheretherketone (PEEK) gears are high-performance polymer gears that are widely used in automobiles, drones, robots, and other fields. However, the complex failure mechanism of PEEK gear and the failure forms change with load lead to a shortage of a reasonable design basis in power transmission applications. Aiming at the unclear failure mechanism and transition of failure forms of PEEK gear, carried out the fatigue performance test of PEEK helical gear pair under oil injection lubrication, and calculated the contact stress and bending stress of PEEK gear, together with analyzing the failure by scanning electron microscopy and other equipment. Experimental results that the failure forms of PEEK gear under oil injection lubrication are mainly tooth surface pitting failure and tooth root fatigue fracture, discussing the failure mechanism of PEEK gear tooth surface pitting and tooth root fatigue fracture under oil injection lubrication. Simultaneously, discovering the critical transition relationship between PEEK gear contact fatigue failure and bending fatigue failure, and proposed an evaluation method for the failure form of PEEK gear. When the ratio of contact stress to bending stress of PEEK gear is lower than 1.02, PEEK gear mainly suffers from root fatigue fracture; when the ratio of contact stress to bending stress is higher than 1.1, PEEK gear mainly suffers tooth surface pitting failure; and when the ratio of PEEK gear contact stress to bending stress is between 1.02-1.1, there is a critical failure transition point between tooth surface contact fatigue and root bending fatigue.

    参考文献
    [1] Mao K, Li W, Hooke C, et al. Friction and wear behaviour of acetal and nylon gears [J]. 2009, 267(1-4): 639-45.
    [2] Kurokawa M, Uchiyama Y, Nagai S. Performance of plastic gear made of carbon fiber reinforced poly-ether-ether-ketone: Part 2 [J]. 2000, 33(10): 715-21.
    [3] Dighe A, Mishra A, Wakchaure V. Investigation of wear resistance and torque transmission capacity of glass filled polyamide and Peek composite spur gears [J]. 2014, 3(3): 299-303.
    [4] HASL C, Illenberger C, Oster P, et al. Potential of oil-lubricated cylindrical plastic gears [J]. 2018, 12(1): JAMDSM0016-JAMDSM.
    [5] Terashima K, Tsukamoto N, Nishida N. Development of plastic gear for power transmission: economical methods for increasing load-carrying capacity [J]. 1986, 29(247): 256-9.
    [6] Singh A K, Siddhartha, Singh P K. Polymer spur gears behaviors under different loading conditions: A review [J]. 2018, 232(2): 210-28.
    [7] Lu Z, Liu H, Zhang R, et al. The simulation and experiment research on contact fatigue performance of acetal gears [J]. 2021, 154: 103719.
    [8] Zhong B, Zhang R, Wei P, et al. The Durability Performance of Polyketone Gears under Various Lubrication Conditions [J]. 2022, 144(9): 091203.
    [9] Mao K, Langlois P, Hu Z, et al. The wear and thermal mechanical contact behaviour of machine cut polymer gears [J]. 2015, 332: 822-6.
    [10] Li W, Wood A, Weidig R, et al. An investigation on the wear behaviour of dissimilar polymer gear engagements [J]. 2011, 271(9-10): 2176-83.
    [11] Mao K, Hooke C, Walton D. The wear behaviour of polymer composite gears [J]. 1996, 12(4): 337-45.
    [12] 卢泽华, 刘怀举, 朱才朝, et al. 润滑和载荷状态对聚甲醛齿轮服役性能的影响 [J]. 2021, 32(17): 2047-54.u Zehua,Liu Huaiju,Zhu Caichao, et al Effects of lubrication and loading levels on POM gear durability performance [J]. 2021, 32(17): 2047-54.
    [13] Lu Z, Liu H, Wei P, et al. The effect of injection molding lunker defect on the durability performance of polymer gears [J]. 2020, 180: 105665.
    [14] Zhong B, Song H, Liu H, et al. Loading capacity of POM gear under oil lubrication [J]. 2022, 16(1): JAMDSM0006-JAMDSM.
    [15] Yu G, Liu H, Mao K, et al. Examination on the wear process of polyformaldehyde gears under dry and lubricated conditions [J]. 2021, 9(3): 538-50.
    [16] Xu X, Gao F, Valle A L, et al. Wear Performance of Commercial Polyoxymethylene Copolymer and Homopolymer Injection Moulded Gears [J]. 2021, 43(4): 561.
    [17] Lu Z, Liu H, Zhu C, et al. Identification of failure modes of a PEEK-steel gear pair under lubrication [J]. 2019, 125: 342-8.
    [18] Zorko D, Kulovec S, Duhovnik J, et al. Durability and design parameters of a Steel/PEEK gear pair [J]. 2019, 140: 825-46.
    [19] Illenberger C, Tobie T, Stahl K. Damage mechanisms and tooth flank load capacity of oil‐lubricated peek gears [J]. 2022: e52662.
    [20] Wood A, Williams V, Weidig R. The relative performance of spur gears manufactured from steel and PEEK [J]. 2012, 2012(3): 58-65.
    [21] Illenberger C, Tobie T, Stahl K. Operating behavior and performance of oil-lubricated plastic gears [J]. 2021: 1-9.
    [22] Sobieraj M C, Murphy J E, Brinkman J G, et al. Notched fatigue behavior of PEEK [J]. 2010, 31(35): 9156-62.
    [23] Avanzini A, Donzella G, Mazzù A, et al. Wear and rolling contact fatigue of PEEK and PEEK composites [J]. 2013, 57: 22-30.
    [24] Garcia-Gonzalez D, Rusinek A, Jankowiak T, et al. Mechanical impact behavior of polyether–ether–ketone (PEEK) [J]. 2015, 124: 88-99.
    [25] Hoskins T, Dearn K, Chen Y, et al. The wear of PEEK in rolling–sliding contact–Simulation of polymer gear applications [J]. 2014, 309(1-2): 35-42.
    [26] 2736VDI 2014-06, Blatt 2: Cylindrical gears-Calculation of the load-carrying capacity [M]. 2014.
    [27] Fajdiga G, Glodež S, Kramar J. Pitting formation due to surface and subsurface initiated fatigue crack growth in contacting mechanical elements [J]. 2007, 262(9-10): 1217-24.
    [28] Zorko D. Investigation on the high-cycle tooth bending fatigue and thermo-mechanical behavior of polymer gears with a progressive curved path of contact [J]. 2021, 151: 106394.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:1233
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-07-27
  • 最后修改日期:2022-11-07
  • 录用日期:2022-11-15
文章二维码