大振幅超声振动辅助高速干切装置设计开发与性能测试
作者:
作者单位:

重庆大学 机械与运载工程学院

中图分类号:

TG663

基金项目:

国家重点研发计划(2020YFB2010500)。


Design and Development of Large-amplitude Ultrasonic Vibration assisted High-speed Dry Cutting Equipment and Its Performance Test
Author:
Affiliation:

College of Mechanical and Vehicle Engineering,Chongqing University

Fund Project:

National Key R&D Program of China (2020YFB2010500)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    超声换能器是超声振动辅助切削装置的核心部件,为研制适用于高速干切的大振幅超声振动辅助切削装置,需先对其进行设计研制。首先,基于考虑刀具的二级放大超声换能器设计方法,遵循“变幅杆-超声换能器”一体式设计理念,结合ANSYS有限元软件的模态分析和谐响应分析结果,设计并研制了二级放大超声换能器。根据所研制的二级放大超声换能器特性,对与其相匹配的超声波发生器、止转环、输电系统和刀柄壳结构进行了系统设计与研制。其次,针对所研制的二级放大超声换能器开展了阻抗分析和振幅测量的性能测试。最后,对所设计研制的大振幅超声振动辅助高速干切装置开展实验测试分析,探究了其对难加工材料30CrMnSiNi2A加工表面质量的改善程度。结果表明:所设计研制的二级放大超声换能器纵向振动仿真结果与理论设计一致。同时,二级放大超声换能器输出振幅稳定,在50 %输出功率下纵振振幅为15.4 μm,最大可达25.1 μm,且输出振幅与功率百分比成正相关,性能测试良好;所研制的大振幅超声振动辅助切削装置可大幅降低进给方向切削力和表面粗糙度,显著改善难加工材料加工表面质量,适用于难加工材料高速干切。

    Abstract:

    Ultrasonic transducer is the core component of ultrasonic vibration assisted cutting device, in order to develop a large-amplitude ultrasonic vibration assisted cutting device suitable for high-speed dry cutting, it is necessary to design and develop the ultrasonic transducer initially. First of all, based on the design method of the second-stage amplified ultrasonic transducer considering the tool, following the integrated design concept of amplifier-ultrasonic transducer, combined with the results of modal analysis and harmonious response analysis of ANSYS finite element software, the two-stage amplified ultrasonic transducer was designed and developed. According to the characteristics of the developed two-stage amplified ultrasonic transducer, the matching ultrasonic generator, anti-rotation ring, power transmission system and tool holder shell structure were designed and developed systematically. Secondly, the performance tests of impedance analysis and amplitude measurement were carried out for the developed two-stage amplified ultrasonic transducer. Finally, the experimental test and analysis of the designed and developed large-amplitude ultrasonic vibration assisted high-speed dry cutting device were carried out to explore the improvement of the surface quality of the difficult-to-machine material 30CrMnSiNi2A. The results show that the longitudinal ultrasonic vibration simulation results of the designed and developed two-stage amplified ultrasonic transducer are consistent with the theoretical design, and the longitudinal vibration amplitude output is stable. Besides, the longitudinal vibration amplitude is 15.4 μm at 50 % output power and can maximum reach 25.1 μm, and the output amplitude is positively correlated with the power percentage which means that the performance test is good. The developed large-amplitude ultrasonic vibration assisted cutting device can greatly reduce the cutting force and surface roughness in the feeding direction, significantly improve the surface quality of difficult-to-machine materials, and is suitable for high-speed dry cutting of difficult-to-machine materials.

    参考文献
    [1] 吴陈军.纵扭共振超声铣削系统研制及其加工实验研究[D].哈尔滨:哈尔滨工业大学,2018.Wu C J. Design and Experimental Study of Longitudinal-Torsional Vibration Assisted Milling System[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [2] 童志强.纵扭共振旋转超声加工碳纤维复合材料的研究[D].厦门:集美大学,2014.Tong Z Q. Study on Longitudinal-Torsional Resonance Rotary Ultrasonic Machining of Carbon Fiber Composites[D]. Xiamen: Jimei University, 2014. (in Chinese)
    [3] 杨潇,曹华军,杜彦斌等.基于切削比能的高速干切工艺刀具温升调控方法[J].中国机械工程,2018,29(21):2559-2564.Yang X, Cao H J, Du Y B, et al. Regulation and Control Method for Tool Temperature in High-speed Dry Cutting Processes Based on Specific Cutting Energy[J]. China Mechanical Engineering, 2018, 29(21): 2559-2564. (in Chinese)
    [4] 刘飞,曹华军,何乃军.绿色制造的研究现状与发展趋势[J].中国机械工程,2000(Z1):114-119+5.Liu F, Cao H J, He N J. The State of Art and Development Trends of Green Manufacturing[J]. China Mechanical Engineering, 2000(Z1): 114-119+5. (in Chinese)
    [5] 曹华军,李洪丞,曾丹等.绿色制造研究现状及未来发展策略[J].中国机械工程,2020,31(02):135-144.Cao H J, Li H C, Zeng D, et al. The State-of-art and Future Development Strategies of Green Manufacturing[J]. China Mechanical Engineering, 2020, 31(02): 135-144. (in Chinese)
    [6] Kardys W, Milewski A, Kogut P, et al. Universal Ultrasonic Generator for Welding[J]. ACTA PHYSICA POLONICA A, 2013, 124(3): 456-458.
    [7] 刘宁庄,张远宝,许龙等.基于模糊PID控制的超声电源频率跟踪设计[J]. 电力电子技术,2021,55(10):80-82.Liu N Z, Zhang Y B, Xu L, et al. Design of Ultrasonic Power Frequency Tracking Based on Fuzzy PID Control[J]. Power Electronics, 2021, 55(10): 80-82. (in Chinese)
    [8] 朱传宇.旋转超声刀柄设计及其试验研究[D].南京:南京航空航天大学,2018.Zhu C Y. Design and Experimental Research of Rotary Ultrasonic Tool Holder[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
    [9] 茆廷学.光学玻璃超声振动铣削刀柄设计研究[D].苏州:苏州科技大学,2018.Mao T X. Research on Design of Ultrasonic Vibration Milling Handle for Optical Glass[D]. Suzhou: Suzhou University of Science and Technology, 2018. (in Chinese)
    [10] 曹凤国.超声加工[M].北京:化学工业出版社,2014.Cao F G. Ultrasonic Machining[M]. Beijing: Chemical Industry Press, 2014. (in Chinese)
    [11] Paktinat H, Amini S. Ultrasonic assistance in drilling: FEM analysis and experimental approaches[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8):2653-2665.
    [12] Zhou J K, Liu M M, Lin J Q, et al. Elliptic vibration assisted cutting of metal matrix composite reinforced by silicon carbide: an investigation of machining mechanisms and surface integrity[J]. Journal of Materials Research and Technology, 2021, 15:1115-1129.
    [13] Ma G F, Kang R K, Yan C, et al. Mechanical model of thrust force and torque in longitudinal-torsional coupled ultrasonic-assisted drilling of CFRP. International Journal of Advanced Manufacturing Technology, 2022, 189–202.
    [14] 崔鑫.三维超声振动切削技术的研究[D].沈阳:东北大学,2012.Cui X. Research on Three-Dimensional Ultrasonic Vibration Cutting Technology[D]. Shenyang: Northeastern University, 2012. (in Chinese)
    [15] 张云电.夹心式压电换能器及其应用[M].北京:科学出版社,2006.Zhang Y D. Sandwich Piezoelectric Transducer and Its Application[M]. Beijing: Science Press, 2006. (in Chinese)
    [16] 袁松梅,唐志祥,吴奇等.纵扭超声换能器设计及其性能测试研究[J].机械工程学报,2019,55(1):139-148.Yuan S M, Tang J X, Wu Q, et al. Design of Longitudinal Torsional Ultrasonic Transducer and Its Performance Test[J]. Journal of Mechanical Engineering, 2019, 55(1):139-148. (in Chinese)
    [17] 王佳奇. 纵扭共振超声波发生器设计及辅助铣削工艺过程仿真研究[D],哈尔滨:哈尔滨工业大学,2020.Wang J Q. Longitudinal-Torsional Resonance Ultrasonic Generator Design and Simulation Research on Auxiliary Milling Process[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [18] 王明海,李世永,郑耀辉等.超声振动铣削加工参数对切削力的影响[J].中国机械工程,2014,25(15):2024-2029.Wang M H, Li S Y, Zheng Y H, et al. Effects of Processing Parameters on Cutting Force in Ultrasonic Vibration Milling[J]. China Mechanical Engineering, 2014, 25(15):2024-2029. (in Chinese)(编辑 xxx)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-29
  • 最后修改日期:2023-03-05
  • 录用日期:2023-03-10
文章二维码