混合多策略改进的野马优化算法及其应用
作者单位:

1.河北工程大学;2.天津大学

基金项目:

国家自然科学基金资助项目(52278171);河北省自然科学基金资助项目(E2020402079);天津大学研究生教育专项基金(C1-2021-004)


Hybrid multi-strategy improved wild horse optimization algorithm and its application
Affiliation:

1.Hebei University of Engineering;2.河北工程大学;3.Tianjin University

Fund Project:

National Natural Science Foundation of China (52278171);Natural Science Foundation of Hebei Province(E2020402079);Tianjin University Graduate Education Special Fund project of 2021 (C1-2021-004)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对野马优化算法后期收敛速度慢、搜索精度低、稳定性低等缺陷,提出了一种混合多策略改进野马优化算法。首先,采用Halton序列初始化增加种群多样性;其次,改进自适应参数以平衡全局搜索和局部开发能力;然后,通过单纯形法改善种群个体最差位置;最后,加入躲避行为来提高算法寻优精度。为了验证改进策略的有效性,选择了9个标准测试函数进行仿真实验。将改进算法应用于机械设计问题和桁架结构优化算例中,其优化结果相比原算法降低了16.61%、0.21%、2.96%和0.61%。统计结果表明,改进算法在解决实际工程问题上较基本算法及其他对比具有更高的寻优精度。

    Abstract:

    Aiming at the defects of late convergence speed, low search accuracy and low stability of wild horse optimizer, a hybrid multi-strategy improved wild horse optimizer was proposed. Firstly, Halton sequence initialization was used to increase population diversity. Secondly, the adaptive parameter was improved to balance the global search and local development capabilities. Then, the worst position of individual population was improved by simplex method. Finally, the escaping behavior was added to improve the optimization accuracy of the algorithm. In order to verify the effectiveness of the improved strategy, 9 standard test functions are selected for simulation experiments. The improved algorithm is applied to mechanical design problems and truss structure optimization examples, and the optimization results are reduced by 16.61%, 0.21%, 2.96% and 0.61% compared with the original algorithm. The statistical results show that the improved algorithm has higher optimization accuracy than the basic algorithm and other comparisons in solving practical engineering problems.

    参考文献
    [1] ????????????? ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J/OL]. Soft Computing, 2019, 23(3): 715-734.DOI:10.1007/s00500-018-3102-4.
    [2] ????????????? ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J/OL]. Artificial Intelligence Review, 2020, 53(3): 2237-2264. DOI:10.1007/s10462-019-09732-5.
    [3] ????????????? JAIN M, SINGH V, RANI A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm[J/OL]. Swarm and Evolutionary Computation, 2019, 44: 148-175. DOI:10.1016/j.swevo.2018.02.013.
    [4] ????????????? MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J/OL]. Knowledge-Based Systems, 2015, 89: 228-249. DOI:10.1016/j.knosys.2015.07.006.
    [5] ????????????? HAYYOLALAM V, POURHAJI KAZEM A A. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems[J/OL]. Engineering Applications of Artificial Intelligence, 2020, 87: 103249.DOI:10.1016/j.engappai.2019.103249.
    [6] ????????????? 付华, 刘昊. 多策略融合的改进麻雀搜索算法及其应用[J/OL]. 控制与决策, 2022, 37(01): 87-96. DOI:10.13195/j.kzyjc.2021.0582.
    [7] ????????????? 刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J/OL]. 控制与决策, 2021, 36(09): 2152-2160.DOI:10.13195/j.kzyjc.2020.0090.
    [8] ????????????? 赵世杰, 高雷阜, 于冬梅, 等. 基于变因子加权学习与邻代维度交叉策略的改进CSA算法[J]. 电子学报, 2019, 47(1): 40-48.
    [9] ????????????? NARUEI I, KEYNIA F. Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems[J/OL]. Engineering with Computers, 2021: 1-32. DOI:10.1007/s00366-021-01438-z.
    [10] ????????????? RAMADAN A, KAMEL S, TAHA I B M, et al. Parameter Estimation of Modified Double-Diode and Triple-Diode Photovoltaic Models Based on Wild Horse Optimizer[J/OL]. Electronics, 2021, 10(18): 2308.DOI:10.3390/electronics10182308.
    [11] ????????????? EMAD D, EL-HAMEED M A, EL-FERGANY A A. Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area[J/OL]. Energy Conversion and Management, 2021, 249: 114847.DOI:10.1016/j.enconman.2021.114847.
    [12] ????????????? ZHENG R, HUSSIEN A G, JIA H M, et al. An Improved Wild Horse Optimizer for Solving Optimization Problems[J/OL]. Mathematics, 2022, 10(8): 1311.DOI:10.3390/math10081311.
    [13] ????????????? ALI M H, KAMEL S, HASSAN M H, et al. An improved wild horse optimization algorithm for reliability based optimal DG planning of radial distribution networks[J/OL]. Energy Reports, 2022, 8: 582-604. DOI:10.1016/j.egyr.2021.12.023.
    [14] ????????????? 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J/OL]. 自动化学报: 1-14. DOI:10.16383/j.aas.c210313.
    [15] ????????????? 刘成汉, 何庆. 改进搜索机制的单纯形法引导麻雀搜索算法[J]. 计算机工程与科学: 1-9.
    [16] ????????????? ABUALIGAH L, YOUSRI D, ABD ELAZIZ M, et al. Aquila Optimizer: A novel meta-heuristic optimization algorithm[J/OL]. Computers Industrial Engineering, 2021, 157: 107250.DOI:10.1016/j.cie.2021.107250.
    [17] ????????????? NARUEI I, KEYNIA F, SABBAGH MOLAHOSSEINI A. Hunter–prey optimization: algorithm and applications[J/OL]. Soft Computing, 2022, 26(3): 1279-1314. DOI:10.007/s00500-021-06401-0.
    [18] ????????????? HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems[J/OL]. Mathematics and Computers in Simulation, 2022, 192: 84-110. DOI:10.1016/j.matcom.2021.08.013.
    [19] ????????????? BRAIK M S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems[J]. Expert Systems With Applications, 2021: 25.
    [20] ????????????? ABUALIGAH L, ELAZIZ M A, SUMARI P, et al. Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer[J/OL]. Expert Systems with Applications, 2022, 191: 116158.DOI:10.1016/j.eswa.2021.116158.
    [21] ????????????? 陈功, 曾国辉, 黄勃, 等. 螺旋探索与自适应混合变异的麻雀搜索算法[J]. 小型微型计算机系统: 1-12.
    [22] ????????????? 王宁, 何庆. 融合黄金正弦与sigmoid连续化的海鸥优化算法[J/OL]. 计算机应用研究, 2022, 39(01): 157-162+169. DOI:10.19734/j.issn.1001-3695.2021.05.0176.
    [23] ????????????? AZIZI M. Atomic orbital search: A novel metaheuristic algorithm[J/OL]. Applied Mathematical Modelling, 2021, 93: 657-683. DOI:10.1016/j.apm.2020.12.021.
    [24] ????????????? HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J/OL]. Future Generation Computer Systems, 2019, 97: 849-872. DOI:10.1016/j.future.2019.02.028.
    [25] ????????????? FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine Predators Algorithm: A nature-inspired metaheuristic[J/OL]. Expert Systems with Applications, 2020, 152: 113377.DOI:10.1016/j.eswa.2020.113377.
    [26] ????????????? DHIMAN G, KUMAR V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications[J/OL]. Advances in Engineering Software, 2017, 114: 48-70. DOI:10.1016/j.advengsoft.2017.05.014.
    [27] ????????????? DHIMAN G, KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J/OL]. Knowledge-Based Systems, 2019, 165: 169-196. DOI:10.1016/j.knosys.2018.11.024.
    [28] ????????????? XUE J, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J/OL]. Systems Science Control Engineering, 2020, 8(1): 22-34. DOI:10.080/21642583.2019.1708830.
    [29] ????????????? ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems[J/OL]. Computers Industrial Engineering, 2021, 158: 107408.DOI:10.1016/j.cie.2021.107408.
    [30] ????????????? KHISHE M, MOSAVI M R. Chimp optimization algorithm[J/OL]. Expert Systems with Applications, 2020, 149: 113338.DOI:10.1016/j.eswa.2020.113338.
    [31] ????????????? 秦维娜, 张达敏, 尹德鑫, 等. 一种基于非线性惯性权重的海鸥优化算法[J]. 小型微型计算机系统, 2022, 43(01): 10-14.
    [32] ????????????? 马驰, 曾国辉, 黄勃, 等. 融合混沌对立和分组学习的海洋捕食者算法[J]. 计算机工程与应用: 1-14.
    [33] ????????????? PIEREZAN J, DOS SANTOS COELHO L, COCCO MARIANI V, et al. Chaotic coyote algorithm applied to truss optimization problems[J/OL]. Computers Structures, 2021, 242: 106353.DOI:10.1016/j.compstruc.2020.106353.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

引用本文
分享
文章指标
  • 点击次数:221
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-11-25
  • 最后修改日期:2023-06-20
  • 录用日期:2023-06-25
文章二维码