模态显著一致性特征挖掘和多粒度特征增强的红外-可见光行人重识别
作者:
作者单位:

1.昆明理工大学 信息工程与自动化学院 昆明;2.昆明理工大学 信息工程与自动化学院

中图分类号:

TP311

基金项目:

云南省科技厅科技计划项目(面上项目)(202101AT070136)和云南省基础研究计划项目(202301AV070004)


Modal Significant consistency feature mining and multi-granularity feature enhancement for Visible-Infrared person re-identification
Author:
Affiliation:

Faculty of Information Engineering and Automation,Kunming University of Science and Technology

Fund Project:

Supported by Science and Technology Planning Project of Yunnan Science and Technology Department (General Project) (202101AT070136) and Supported by Basic Research Program Project of Yunnan Province (202301AV070004)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    红外-可见光行人重识别(VI-ReID)是一项在可见光和红外光模态下匹配相同行人的任务。尽管现有的 VI-ReID 方法取得一定成果,但这些方法并未有效利用行人的跨模态显著信息和多粒度信息。为此,本文提出了模态显著一致性特征挖掘和多粒度特征增强的 VI-ReID 方法。其中,模态显著一致性特征挖掘改进了交叉注意力机制的关系权重选择方式,实现了模态显著一致性特征的有效提取;多粒度特征增强通过提取行人不同粒度下的细粒度特征,有效利用了行人的局部鉴别性信息。与现有方法相比,本文提出的方法在公共数据集 SYSU-MM01 和 RegDB 上取得了明显的优势。实验表明,跨模态显著信息和多粒度信息的有效利用能够提升特征的跨模态鲁棒性。

    Abstract:

    Visible-Infrared person re-identification (VI-ReID) is a task of matching person in both visible and infrared modes. Although existing VI-ReID methods have achieved certain results, they have not effectively utilized the cross modality significant information and multi-granularity information of person. Therefore, this paper proposes a VI-ReID method for modal significant consistency feature mining and multi-granularity feature enhancement. Among them, the modal significant consistency feature mining improves the relationship weight selection method of cross attention mechanism, achieving effective extraction of modal significant consistency features; multi-granularity feature enhancement effectively utilizes the local discriminative information of person by extracting fine-grained features of person at different granularity. Compared with existing methods, the method proposed in this paper has achieved significant advantages on the public datasets SYSU-MM01 and RegDB. Experiments have shown that the effective utilization of cross modality significant information and multi-granularity information can enhance the cross modal robustness of features.

    参考文献
    [1] 李玲莉, 谢明鸿, 李凡, 等. 低秩先验引导的无监督域自适应行人重识别[J]. 重庆大学学报, 2021, 44(11): 57-70.Li L L, Xie M H, Li F, et al. Unsupervised domain adaptative person re-identification guided by low-rank priori[J]. Journal of Chongqing University, 2021, 44(11): 57-70. (in Chinese).
    [2] 董能, 谢明鸿, 张亚飞, 等. 知识引导和细粒度信息增强的无监督域自适应行人再识别[J]. 重庆大学学报.Dong N, Xie M H, Zhang Y F, et al. Knowledge guidance and fine-grained information enhancement for Unsupervised domain adaptation person re-identification. Journal of Chongqing University. (in Chinese).
    [3] 徐开雄,李凡,李华锋,等. 共享知识引导和模态一致性学习的可见光-红外行人重识别[J]. 重庆大学学报.Xu K X, Li F, Li H F, et al. Shared knowledge guidance and modal consistency learning for Visible-Infrared person re-identification. (in Chinese).
    [4] G. Wang, T. Zhang, J. Cheng, S. Liu, Y. Yang, and Z. Hou, “Rgb-infrared cross-modality person re-identi?cation via joint pixel and feature alignment,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3622–3631.
    [5] Z. Wei, X. Yang, N. Wang, and X. Gao, “Flexible body partition-based adversarial learning for visible infrared person re-identi?cation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4676–4687, 2022.
    [6] S. Choi, S. Lee, Y. Kim, T. Kim, and C. Kim, “Hi-cmd: Hierarchical cross-modality disentanglement for visible-infrared person reidenti?cation,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10 254–10 263.
    [7] Z. Zhao, R. Sun, Z. Yang, and J. Gao, “Visible-infrared person reidenti?cation based on frequency-domain simulated multispectral modality for dual-mode cameras,” IEEE Sensors Journal, vol. 22, no. 1, pp. 989–1002, 2022.
    [8] M. Ye, J. Shen, and L. Shao, “Visible-infrared person re-identi?cation via homogeneous augmented tri-modal learning,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 728–739, 2021.
    [9] X. Zhong, T. Lu, W. Huang, M. Ye, X. Jia, and C.-W. Lin, “Grayscale enhancement colorization network for visible-infrared person re-identi?cation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 3, pp. 1418–1430, 2022.
    [10] C. Chen, M. Ye, M. Qi, J. Wu, J. Jiang, and C.-W. Lin, “Structure-aware positional transformer for visible-infrared person re-identi?cation,” IEEE Transactions on Image Processing, vol. 31, pp. 2352–2364, 2022.
    [11] Y. Gao, T. Liang, Y. Jin, X. Gu, W. Liu, Y. Li, and C. Lang, “Mso: Multifeature space joint optimization network for rgb-infrared person reidenti?cation,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 5257–5265.
    [12] M. Ye, C. Chen, J. Shen, and L. Shao, “Dynamic tri-level relation mining with attentive graph for visible infrared re-identi?cation,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 386– 398, 2022.
    [13] Y. Feng, F. Chen, Y. -m. Ji, F. Wu and J. Sun, "Efficient Cross-Modality Graph Reasoning for RGB-Infrared Person Re-Identification," inSIEEE Signal Processing Letters, vol. 28, pp. 1425-1429, 2021, doi: 10.1109/LSP.2021.3093865.
    [14] Lin X, Li J, Ma Z, et al. Learning Modal-Invariant and Temporal-Memory for Video-Based Visible-Infrared Person Re-Identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 20973-20982.
    [15] Zhang C, Liu H, Guo W, et al. Multi-scale cascading network with compact feature learning for RGB-infrared person re-identification[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 8679-8686.
    [16] Y. Cheng, X. Li, G. Xiao, W. Ma and X. Gou, "Dual-Path Deep Supervision Network with Self-Attention for Visible-Infrared Person Re-Identification," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, doi: 10.1109/ISCAS51556.2021.9401292.
    [17] Liu H , Xia D , Jiang W , et al. Towards Homogeneous Modality Learning and Multi-Granularity Information Exploration for Visible-Infrared Person Re-Identification[J]. 2022.
    [18] Zhao J, Wang H, Zhou Y, et al. Spatial-Channel Enhanced Transformer for Visible-Infrared Person Re-Identification[J]. IEEE Transactions on Multimedia, 2022.
    [19] Wu A, Zheng W S, Yu H X, et al. RGB-infrared cross-modality person re-identification[C]. Proceedings of the IEEE international conference on computer vision(ICCV), 2017: 5380-5389.
    [20] Gong Y , Wang L , Li Y , et al. A Discriminative Person Re-Identification Model With Global-Local Attention and Adaptive Weighted Rank List Loss[J]. IEEE Access, 2020, 8:203700-203711.
    [21] Lian S , Jiang W , Hu H . Attention-Aligned Network for Person Re-Identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, PP(99):1-1.
    [22] Han C , Zheng R , Gao C , et al. Complementation-Reinforced Attention Network for Person Re-Identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020(10):30.
    [23] Li C , Jin S , Chang E , et al. SCANet: Person Re-Identification with Semantically Consistent Attention[C]// 2020 Chinese Automation Congress (CAC). 2020.
    [24] Nguyen D T, Hong H G, Kim K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605.
    [25] X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu, “Shape and appearance context modeling,” in 2007 IEEE 11th International Conference on Computer Vision (ICCV), 2007, pp. 1–8.
    [26] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable person re-identi?cation: A benchmark,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1116–1124.
    [27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in Neural Information Processing Systems (NeurIPS), vol. 32, 2019.
    [28] H. Luo, Y. Gu, X. Liao, S. Lai, and W. Jiang, “Bag of tricks and a strong baseline for deep person re-identi?cation,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019, pp. 1487–1495.
    [29] M. Ye, X. Lan, Z. Wang and P. C. Yuen, "Bi-Directional Center-Constrained Top-Ranking for Visible Thermal Person Re-Identification," in IEEE Transactions on Information Forensics and Security, vol. 15, pp. 407-419, 2020, doi: 10.1109/TIFS.2019.2921454.
    [30] Wang G, Zhang T, Cheng J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3623-3632.
    [31] Kansal K, Subramanyam A V, Wang Z, et al. SDL: Spectrum-disentangled representation learning for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3422-3432.
    [32] Wu A, Zheng W S, Gong S, et al. Rgb-ir person re-identification by cross-modality similarity preservation[J]. International journal of computer vision, 2020, 128(6): 1765-1785.
    [33] Ye M, Shen J, Lin G, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(6): 2872-2893.
    [34] Ye M, Shen J, J Crandall D, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//European Conference on Computer Vision. Springer, Cham, 2020: 229-247.
    [35] Zhang Z, Jiang S, Huang C, et al. RGB-IR cross-modality person ReID based on teacher-student GAN model[J]. Pattern Recognition Letters, 2021, 150: 155-161.
    [36] Choi S, Lee S, Kim Y, et al. Hi-CMD: Hierarchical cross-modality disentanglement for visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 10257-10266.
    [37] Ye M, Shen J, Shao L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 728-739.
    [38] Hu W, Liu B, Zeng H, et al. Adversarial Decoupling and Modality-invariant Representation Learning for Visible-Infrared Person Re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022.
    [39] Zhong X, Lu T, Huang W, et al. Grayscale enhancement colorization network for visible-infrared person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3): 1418-1430.
    [40] Ye M, Chen C, Shen J, et al. Dynamic tri-level relation mining with attentive graph for visible infrared re-identification[J]. IEEE Transactions on Information Forensics and Security, 2021, 17: 386-398.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:194
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-12-14
  • 最后修改日期:2023-04-15
  • 录用日期:2023-04-28
文章二维码