基于Wasserstein GAN数据增强的矿物浮选纯度预测
作者:
作者单位:

重庆大学 机械与运载工程学院

中图分类号:

TP391.4; TD952

基金项目:

中央高校基本科研业务费专项资金(No. 2022CDJKYJH024)和重庆市自然科学基金面上项目 (No. 2022NSCQ-MSX1629)


Froth flotation purity prediction based on Wasserstein GAN data augmentation
Author:
Affiliation:

College of Mechanical Engineering,Chongqing University

Fund Project:

the Fundamental Research Funds for the Central Universities (No. 2022CDJKYJH024) and the Natural Science Foundation of Chongqing (No. 2022NSCQ-MSX1629)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    在选矿行业中,准确地预测精矿品位可以帮助工程师提前进行工艺参数调整,提高浮选性能。但在实际选矿过程中,采集数据存在样本量少、维度高、时序相关性复杂等问题,限制了精矿品位的预测精度。针对小样本数据的预测问题,提出了一种将Wasserstein生成对抗网络(wasserstein generative adversarial network, Wasserstein GAN)和长短期记忆网络(long short-term memory, LSTM)相结合的时间序列数据生成模型LS-WGAN,主要利用LSTM网络来获取选矿数据中的时间相关性,再通过Wasserstein GAN 网络生成与原始数据分布相似的样本进行数据增强;为了更加准确的预测精矿品位,建立了浮选预测模型C-LSTM,并基于真实泡沫浮选工艺数据实验验证了所提出方法的预测准确性。

    Abstract:

    In mineral processing industry, accurately predicting concentrate grade can help engineers adjust process parameters in advance and improve flotation performance. However, the prediction accuracy of concentrate grade has been restricted by limited sample sizes, high-dimensional data and complex temporal correlations in actual mineral processing. A time-series data generation model called LS-WGAN is proposed according to the problem of prediction for small sample data, which combines wasserstein generative adversarial network (Wasserstein GAN) and long short-term memory (LSTM) neural network. LSTM network is mainly used to capture the time correlation in mineral processing data, then Wasserstein GAN is used to generate samples similar to the original data distribution for data augmentation. In order to improve concentrate grade prediction accuracy, a mineral processing prediction model called C-LSTM is established, the prediction accuracy of the proposed method is verified by experiments based on real froth flotation process data.

    参考文献
    [1] B. Shean and J. Cilliers, “A review of froth flotation control, ” International Journal of Mineral Processing, vol. 100, no. 3-4, pp. 57–71,2011.
    [2] G. Wang, A. V . Nguyen, S. Mitra, J. Joshi, G. J. Jameson, and G. M. Evans, “A review of the mechanisms and models of bubble-particle detachment in froth flotation,” Separation and Purification Technology, vol. 170, pp. 155–172, 2016.
    [3] S. Vieira, J. Sousa, and F. Dur?ao, “Fuzzy modelling strategies applied to a column flotation process,” Minerals Engineering, vol. 18, no. 7, pp. 725–729, 2005.
    [4] J. T. McCoy and L. Auret, “Machine learning applications in minerals processing: A review,” Minerals Engineering, vol. 132, pp. 95–109, 2019.
    [5] F. Nakhaei, M. Mosavi, A. Sam, and Y . V aghei, “Recovery and grade accurate prediction of pilot plant flotation column concentrate: Neuralnetwork and statistical techniques,” International Journal of Mineral Processing, vol. 110, pp. 140–154, 2012.
    [6] S. C. Chelgani, B. Shahbazi, and B. Rezai, “Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network,” International Journal of Minerals, Metallurgy, and Materials, vol. 17, no. 5, pp. 526–534, 2010.
    [7] C. Yang, H. Ren, C. Xu, and W. Gui, “Soft sensor of key index for flotation process based on sparse multiple kernels least squares support vector machines,” The Chinese Journal of Nonferrous Metals, vol. 21, no. 12, pp. 3149–3154, 2011.
    [8] S. C. Chelgani, B. Shahbazi, and E. Hadavandi, “Support vector regression modeling of coal flotation based on variable importance measurements by mutual information method,” Measurement, vol. 114, pp. 102–108, 2018.
    [9] H.-F. Ren, C.-H. Yang, X. Zhou, W.-H. Gui, and F. Yan, “Froth image feature weighted svm based working condition recognition for flotation process,” Journal of Zhejiang University. Engineering Science, vol. 45, no. 12, pp. 2115–2119, 2011.
    [10] B. Shahbazi, S. C. Chelgani, and S. Matin, “Prediction of froth flotation responses based on various conditioning parameters by random forest method,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 529, pp. 936–941, 2017.
    [11] I. Jovanovi′c, I. Miljanovi′c, and T. Jovanovi′c, “Soft computing-based modeling of flotation processes–a review,” Minerals Engineering, vol. 84, pp. 34–63, 2015.
    [12] Y . Pu, A. Szmigiel, J. Chen, and D. B. Apel, “Flotationnet: A hierarchical deep learning network for froth flotation recovery prediction,” Powder Technology, vol. 375, pp. 317–326, 2020.
    [13] Y . Pu, A. Szmigiel, and D. B. Apel, “Purities prediction in a manufacturing froth flotation plant: the deep learning techniques,” Neural Computing and Applications, vol. 32, no. 17, pp. 13639–13649, 2020.
    [14] M. Montanares, S. Guajardo, I. Aguilera, and N. Risso, “Assessing machine learning-based approaches for silica concentration estimation in iron froth flotation,” in 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–6, IEEE, 2021.
    [15] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time series data augmentation for deep learning: A survey,” arXiv preprint arXiv:2002.12478, 2020.
    [16] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text data augmentation for deep learning,” Journal of big Data, vol. 8, no. 1, pp. 1–34, 2021.
    [17] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48, 2019.
    [18] M. Olson, A. Wyner, and R. Berk, “Modern neural networks generalize on small data sets,” Advances in Neural Information Processing Systems, vol. 31, 2018.
    [19] B. Rok and L. Lusa, “Smote for high-dimensional class-imbalanced data,” BMC Bioinformatics, vol. 14, no. 1, pp. 106–121, 2013.
    [20] S. Shao, P . Wang, and R. Yan, “Generative adversarial networks for data augmentation in machine fault diagnosis,” Computers in Industry, vol. 106, pp. 85–93, 2019.
    [21] B. Zhao and Q. Y uan, “Improved generative adversarial network for vibration-based fault diagnosis with imbalanced data,” Measurement, vol. 169, p. 108522, 2021.
    [22] A. Le Guennec, S. Malinowski, and R. Tavenard, “Data augmentation for time series classification using convolutional neural networks,” in ECML/PKDD workshop on advanced analytics and learning on temporal data, 2016.
    [23] J. J. Bird, C. M. Barnes, L. J. Manso, A. Ekárt, and D. R. Faria, “Fruit quality and defect image classification with conditional gan data augmentation,” Scientia Horticulturae, vol. 293, p. 110684, 2022.
    [24] M. N. Fekri, A. M. Ghosh, and K. Grolinger, “Generating energy data for machine learning with recurrent generative adversarial networks,” Energies, vol. 13, no. 1, p. 130, 2019.
    [25] N. V . Chawla, K. W. Bowyer, L. O. Hall, and W. P . Kegelmeyer, “Smote: synthetic minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.
    [26] H. Inoue, “Data augmentation by pairing samples for images classification,” arXiv preprint arXiv:1801.02929, 2018.
    [27] H. Zhang, M. Cisse, Y . N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:133
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-12-20
  • 最后修改日期:2023-02-17
  • 录用日期:2023-02-27
文章二维码