航空弹性薄壁机匣模态分析与结构参数优化
作者:
作者单位:

重庆大学 机械传动国家重点实验室

中图分类号:

TH113.1

基金项目:

重庆市杰出青年科学基金项目(CSTB2022NSCQ-JQX0026)


Modal analysis and structural parameter optimization of aviation elastic thin-walled casing
Author:
Affiliation:

State Key Laboratory of Mechanical Transmissions,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • | | | |
  • 文章评论
    摘要:

    针对某型航空弹性薄壁机匣的模态共振问题,考虑航空机架弹性支承刚度,采用有限元法进行典型工况下约束模态分析,研究了薄壁机匣结构参数对约束模态固有频率的影响规律。结果表明优化支承位置是大幅度改变固有频率最有效的方式;当固有频率处在共振区间边缘时,可通过优化壁厚、筋板的方法小幅度调整。当两个支承位置位于机匣平面对称轴线时,固有频率最小且随着支承距离的减小而减小。随着薄壁厚度的增大,1、3、5、6阶模态频率减小,2、4阶增大。1、3阶模态频率基本不受筋板参数的影响;2、4阶模态频率随着筋板宽度、高度的增大和宽高比的减小而增大且4阶频率随着筋板角度的增大而增大;5、6阶模态频率随着筋板角度的增大、筋板宽度的减小而增大。在此基础上,对弹性薄壁机匣的结构参数进行优化使固有频率避开共振区间,提高了机匣的抗振能力。

    Abstract:

    In order to solve the resonance problem of an aviation elastic thin-walled casing, the finite element method was used to analyze the constrained modal under typical working conditions based on the elastic support stiffness of the aircraft frame. In this paper, the influence of structural parameters of aviation elastic thin-walled casing on the natural frequencies of constrained modal was studied. The results show that optimizing the position of constraint is the most effective way to change the natural frequencies greatly. When the natural frequency is at the edge of the resonance intervals, it can be adjusted slightly by optimizing the wall thickness and stiffener parameters. When the two constraint positions are located on the symmetry axis of the casing plane, the natural frequencies are minimum and decrease obviously with the decreasing of the constraint distance. With the increase of the thin-wall thickness, the 1st, 3rd, 5th and 6th modal frequencies decrease and the 2nd and 4th modal frequencies increase. The 1st and 3rd modal frequencies are almost not affected by the stiffener parameters. The 2nd, 4th modal frequencies increase with the increasing width and height of stiffener and decreasing stiffener aspect ratio. In addition, the 4th modal frequency increases with the increasing angle of stiffener. The 5th and 6th modal frequencies increase with increasing stiffener angle and decreasing stiffener width. On this basis, the structural parameters of the aviation elastic thin-walled casing were optimized to make the natural frequencies avoid the resonance intervals, thus improving the vibration resistance of the casing.

    参考文献
    [1] 肖正明, 秦大同, 武文辉, 等. 盾构机多级行星减速器箱体模态分析与试验[J]. 重庆大学学报: 自然科学版, 2012, 35(7): 37-42.Xiao Z M, Qin D T, Wu W H, et al. Testing and modal analysis on multi-stage planetary gearbox housing of shield tunnelling machine[J]. Journal of Chongqing University: Natural Science Edition, 2012, 35(7): 37-42. (in Chinese)
    [2] 秦训鹏, 冯佳伟, 王永亮, 等. 基于响应面方法的微型车车门模态分析与优化[J]. 中国机械工程, 2017, 28(14): 1690-1695.Qin X P, Feng J W, Wang Y L , et al. Structural Modal Analysis and Optimization of Mini-car Doors Based on Response Surface Method[J]. China Mechanical Engineering, 2017, 28(14): 1690-1695. (in Chinese)
    [3] 吴宏春, 韩清凯. 弹性支承黏弹性阻尼-航空发动机薄壁机匣动力学特性分析[J]. 航空动力学报, 2020, 35(07): 1413-1424.Wu H C, Han Q K. Dynamic characteristics analysis of aero engine casing structures with viscoelastic damping materials under elastic supports[J]. Journal of Aerospace Power, 2020, 35(07): 1413-1424. (in Chinese)
    [4] 汪利洋. 航空附件机匣动态特性匹配优化研究[D]. 重庆: 重庆大学, 2021.Wang L Y. Research on Matching Optimization of Dynamic Characteristics of Aviation Accessory Gearbox[D]. Chongqing: Chongqing University, 2021. (in Chinese)
    [5] Wiedemann S M. Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 2007, 300(1-2): 280-291.
    [6] LIU Y C, ZANG C P. Mode shape description of an aero-engine casing structure using Zernike moment descriptors[J]. Journal of Aerospace Power, 2011, 26(04): 760-770.
    [7] Kumar A, Jaiswal H, Jain R, et al. Free vibration and material mechanical properties influence based frequency and mode shape analysis of transmission gearbox casing[J]. Procedia Engineering, 2014, 97: 1097-1106.
    [8] Wang Y, Ni P, Wen D, et al. Dynamic performance optimization of circular sawing machine gearbox[J]. Applied Sciences, 2019, 9(20): 4458.
    [9] Bartilson D T, Jang J, Smyth A W. Symmetry properties of natural frequency and mode shape sensitivities in symmetric structures[J]. Mechanical Systems and Signal Processing, 2020, 143: 106797.
    [10] Saglik H, Balkaya C, Chen A, et al. Development of natural frequency in multi-span composite bridges with variable cross-section: Analytical and numerical solutions[C]//Structures. Elsevier, 2022, 45: 1657-1666.
    [11] Seba M R, Kebdani S. Finite Element and Neural Network Based Predictive Model to Determine Natural Frequency of Laminated Composite Plates with Eccentric Cutouts under Free Vibration[J]. Journal: Advances in Technology Innovation, 2022 (2): 131-142.
    [12] Kim J, Kim J J, Jang I G. Integrated topology and shape optimization of the five-spoke steel wheel to improve the natural frequency[J]. Structural and Multidisciplinary Optimization, 2022, 65(3): 1-12.
    [13] Davoud S G, Rahimi G, Zarei M, et al. Free vibration analyses of composite sandwich cylindrical shells with grid cores: Experimental study and numerical simulation[J]. Mechanics Based Design of Structures and Machines, 2022, 50(2): 687-706.
    [14] Basu C P, Anirban M, Sarmila S. Taguchi Analysis of Natural Frequency for Simply Supported Composite Stiffened Hypars with Perforation[C]//Materials Science Forum. Trans Tech Publications Ltd, 2022, 1074: 39-46.
    [15] 孙新. 低压涡轮轴盘螺栓组预紧力分布机理及其模态特性[D]. 大连: 大连理工大学, 2017.Sun X. The Distribution Mechanism on Preload of Bolt Group and Modal Characteristics of Low Pressure Turbine Shaft and Disc[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:228
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-08
  • 最后修改日期:2023-03-04
  • 录用日期:2023-03-24
文章二维码