基于SVM算法的跌倒检测及保护系统研究
作者:
作者单位:

1.重庆大学医学院,重庆大学附属中心医院,重庆市急救医疗中心;2.重庆大学医学院 重庆大学附属中心医院;3.重庆大学 大数据与软件学院;4.重庆大学

中图分类号:

TP23

基金项目:

重庆市科卫联合项目(2020MSXM111),中央高校基本科研业务费医工融合项 (2021CDJYGRH011),重庆市科卫联合课题面上项目(2023MSXM023)


Research on fall Detection and Protection System based on SVM
Author:
Affiliation:

1.Chongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine,Chongqing University, Chongqing, China;2.Chongqing University Center Hospital,School of Medicine,Chongqing University;3.School of Big Data Software Engineering,Chongqing University;4.hongqing Emergency Medical Center, Chongqing University Center Hospital, School of Medicine,Chongqing University, Chongqing, China;5.Chongqing University

Fund Project:

Chongqing Science and Health Joint Project (2020MSXM111), the Central Universities Project in China(2021CDJYGRH011), Chongqing Science and Health Joint Project(2023MSXM023)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    实时跌倒预测保护能够显著降低老人跌倒致伤的风险,提高老人独居自理能力和身心健康水平。为了提高跌倒预测算法的识别准确率、召回率、特异度,减少跌倒判别和气囊保护系统的充气时间,设计了一种基于SVM的多级阈值跌倒预测算法及气囊保护系统,实现对跌倒行为的实时预测和保护。首先,利用佩戴在腰部的加速度传感器实现运动数据的采集;然后利用SVM算法得到分类跌倒和日常行为的合加速度、加速度、姿态角阈值,最后在单片机上预测算法进行重构,实现跌倒行为的实时预测,并根据预测结果判定是否触发气囊保护系统。实验结果表明,本文算法对跌倒的识别准确率、召回率、特异度分别为97.3%、99%和96.1%,保护气囊的平均充气时间为350.4ms,具有识别准确率高,充气时间短的优点,从而加强了该系统在实时跌倒预测与保护中的应用。

    Abstract:

    Real-time fall prediction and protection can significantly reduce the risk of fall injury and improve the self-care ability and physical and mental health of the elderly living alone. In order to improve the recognition accuracy, recall rate and specificity of the fall prediction algorithm, and reduce the fall discrimination and inflating time of the air bag protection system, a SVM-based multi-threshold fall prediction algorithm and air bag protection system were designed to realize the real-time prediction and protection of the fall behavior. Firstly, the acceleration sensor worn on the waist is used to collect motion data. Then, SVM algorithm is used to obtain the acceleration, acceleration and attitude Angle threshold of classified falls and daily behaviors. Finally, the prediction algorithm is reconstructed on the single chip microcomputer to realize the real-time prediction of falls and determine whether the air bag protection system is triggered according to the prediction results. The experimental results show that the recognition accuracy, recall rate and specificity of the proposed algorithm for falls are 97.3%, 99% and 96.1%, respectively. The average inflating time of the protective air bag is 350.4ms, which has the advantages of high recognition accuracy and short inflating time, thus strengthening the application of the system in real-time fall prediction and protection.

    参考文献
    [1] 联合国人口委员会. 世界人口趋势报告[EB/OL].https://www.sohu.com/a/311822567753682, 2018.
    [2] 钟志超. 可穿戴实时跌倒检测与保护系统的开发[D]. 浙江大学, 2019.
    [3] Tamura T, Yoshimura T, Sekine M, et al. A wearable airbag to prevent fall injuries [J]. IEEE Transactions on Information Technology in Biomedicine, 2009,13(6) :910 - 914.
    [4] Huang Shuang Cheng, Wei Xinhua. Design of Automobile Engine Fault Diagnosis Instrument Based on STM32 and LabVIEW[J]. Journal of Physics: Conference Series,2021,1820(1).
    [5] 王甲, 阮颐, 宋文博. 一种缸体式燃气表的设计探讨[J]. 集成电路应用, 2018,35(09):46-48.Wang J, Ruan Y, Song W B. Design of Rigid Cylinder Gas Meter[J]. Application of IC, 2018, 35(09):46-48.(in Chinese)
    [6] 丛顺, 杜子文, 董艺. 智能气囊安全防护服研究现状与展望[J]. 工业安全与环保, 2022, 48(10):4.ong S, Du Z W, Dong Y. Research status and prospect of intelligent airbag safety protective clothing[J]. Industrial Safety and Environmental Protection, 2022, 48(10):4.
    [7] Ning YK, Liang D. Design and realization of a wireless data acquisition system based on multi-nodes and multi-base-stations [J]. Applied Mechanics and Materials, 2013, 461: 581-588.
    [8] Chen X , Jiang S , Lo B . Subject-Independent Slow Fall Detection with Wearable Sensors via Deep Learning[C]// 2020 IEEE SENSORS. IEEE, 2020.
    [9] 孙佳亨,孟晓亮,梁豪, 等. 基于MEMS传感器的体操动作识别[J].电子测量与仪器学报,2020,32(3):94-99.Sun J H, Meng X L, Liang H, et al. Gymnastics motion recognition based on MEMS sensor[J]. Journal of Electronic Measurement and Instrumentation,2020,32(3):94-99. (in Chinese)
    [10] Agarwal I , Mishra R , Srivastava V , et al. Automatic Gesture Recognizer using Motion Tracking Device and Support Vector Machine[C]// 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). 2021.
    [11] 任晶秋, 蒋杨, 张光华. AHRS的老人跌倒检测算法[J]. 电子测量与仪器学报,2020,32(12):190-196Ren J Q, Jiang Y, Zhang G H. The algorithm of elderly fall detection based on AHRS[J]. Journal of Electronic Measurement and Instrumentation, 2006,27( 7) : 730-733. (in Chinese)
    [12] Xin S , Lei L , Xiong Q . Abnormal gait recognition based on quadratic feature extraction and support vector machine[J]. Chinese Journal of Scientific Instrument, 2011, 32(3):673-677.
    [13] 朱海亮,潘巨龙,刘鹏达.基于PCA-ANN的跌倒检测系统设计与实现[J].微电子学与计算机,2022,39(6):108-114.Zhu HL, Pan J L, Liu P Y. Design and implementation of fall detection system based on PCA-ANN[J]. Microelectronics Computer, 2022,39(6):108-114. (in Chinese)
    [14] 任磊. 基于智能手机的跌倒检测方法研究及实现[D]. 浙江大学, 2019.
    [15] Wang G , Li Q , Wang L , et al. CMFALL: A Cascade and Parallel Multi-State Fall Detection Algorithm Using Waist-Mounted Tri-Axial Accelerometer Signals[J]. IEEE Transactions on Consumer Electronics, 2020(66-3).(编辑 詹燕平)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:281
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-01-17
  • 最后修改日期:2023-09-02
  • 录用日期:2023-09-05
文章二维码