接触问题的三角形载荷离散FFT加速算法
作者:
作者单位:

1.重庆大学航空航天学院;2.哈尔滨工业大学理学院


FFT acceleration algorithm for contact problems based on triangular element discretization
Author:
Affiliation:

1.College of Aerospace Engineering,Chongqing University,Chongqing;2.School of Science,Harbin Institute of Technology,Shenzhen

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    接触问题控制方程的有效求解,往往涉及到复杂的数学理论知识,而在实际工程应用中,接触应力分布又具有高度的随机性。为高效快速求解任意载荷分布下固体的接触响应,本文基于三角形载荷离散单元,嵌入离散卷积快速傅里叶变换(DC-FFT)算法,提供了一种高精度、高可靠度的计算方法。相比于通常采用的分段均布载荷离散方法,三角形单元的解析求解略显复杂,但能更好地模拟接触载荷任意分布的特性,对于接触边缘处载荷由零递增或递减为零的情况,也可以予以充分考虑。为优化三角形载荷离散单元的求解方法,本文基于接触影响系数矩阵的“激励—响应”特性,推导了三角形载荷单元和均布载荷单元作用下的应力分量解析解。通过构造包含影响系数矩阵的离散卷积形式应力解,将某一目标节点在所有载荷单元作用下,重复度极高的矩阵运算叠加过程,采用 DC-FFT的算法进行简化加速计算。通过程序编程计算,分析验证了本文基于三角形载荷单元的快速接触求解算法的精确度和高效性。

    Abstract:

    Effectively solving the governing equations for contact problems often involves complex mathematical theory, while the distribution of contact stress is highly random in practical engineering applications. In this study, a novel algorithm is proposed based on the triangular load discrete element and the Discrete Convolution Fast Fourier Transform (DC-FFT) algorithm. This algorithm provides a high-precision and reliable method for efficiently solving the contact response of a solid under any load distribution. Compared to the commonly used uniform load element discrete method, the analytical solution of the triangular element is more complex, but it better simulates the characteristics of contact load distribution and accounts for situations where the load at the contact edge increases from zero or decreases to zero. The stress component under the action of the triangular and uniform load elements is derived based on the "excitation-response" characteristics of the contact influence coefficient matrix to optimize the solution method of the triangular load discrete element. By constructing the stress solution in the form of a discrete convolution including the influence coefficient matrix, the stress superposition effect of a target node under the action of all elements can be further simplified and accelerated by using the DC-FFT algorithm for highly repetitive matrix calculations. Programming and calculation analysis show that the proposed algorithm based on the triangular load element is accurate and efficient.

    参考文献
    [1] Li Y, Yang Y, Li M, et al. Dynamics analysis and wear prediction of rigid-flexible coupling deployable solar array system with clearance joints considering solid lubrication[J]. Mechanical Systems and Signal Processing, 2022, 162:108059.
    [2] Steuermann E. To Hertz’s theory of local deformations in compressed elastic bodies[C]//CR (Dokl.) Acad. Sci. URSS. 1939,25(5): 359-361.
    [3] Nowell D, Hills D A. Tractive rolling of tyred cylinders[J]. International Journal of Mechanical Sciences, 1988, 30(12): 945-957.
    [4] Ju Y, Farris T N. Spectral Analysis of Two-Dimensional Contact Problems[J]. Journal of Tribology-transactions of The Asme, 1996, 118: 320-328.
    [5] Sun L L, Wang Q J, Zhao N, et al. Discrete convolution and FFT modified with double influence-coefficient superpositions (DCSS–FFT) for contact of nominally flat heterogeneous materials involving elastoplasticity[J]. Computational Mechanics, 2021, 67(3): 989-1007.
    [6] Sun L, Wang Q J, Zhang M, et al. Discrete convolution and FFT method with summation of influence coefficients (DCS–FFT) for three-dimensional contact of inhomogeneous materials[J]. Computational Mechanics, 2020, 65(6): 1509-1529.
    [7] Wang Q J, Sun L, Zhang X, et al. FFT-Based Methods for Computational Contact Mechanics[J]. Frontiers in Mechanical Engineering, 2020, 6:61.
    [8] Li Q, Popov V L. Non-adhesive contacts with different surface tension inside and outside the contact area[J]. Frontiers in Mechanical Engineering, 2020, 6: 63.
    [9] 牛睿, 万强, 靳凡,等. 基于共轭梯度法和快速傅立叶变换的粗糙表面微动接触数值研究[J]. 计算力学学报, 2017, 34(3):312-321. Niu R, Wan Q, Jin F, et al. A numerical analysis of fretting contact with rough surface based on conjugate gradient method and fast Fourier transform[J].Chinese Journal of Computational Mechanics, 2017, 34(3):312-321.(in Chinese)
    [10] Rey V, Anciaux G, Molinari J F. Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution[J]. Computational Mechanics, 2017, 60(1):1-13.
    [11] Yu Y, Suh J. Numerical analysis of three-dimensional thermo-elastic rolling contact under steady-state conditions[J].Friction,2022,10(4):630-644.
    [12] 吴桐. 粗糙表面微动接触分析[D]. 武汉科技大学, 2019.
    [13] Wu T. Fretting contact analysis of rough surfaces[D]. Wuhan University of Science and Technology,2019(in Chinese)
    [14] [13] 帅琪琪, 陈晓阳, 陈世金,等. 预紧方式对弹流润滑下角接触球轴承内部力学特性的影响[J]. 摩擦学学报,2022,42(1):85-94.Shuai Q Q, Chen X Y, Chen S J, et al. Influences of Preload Methods on Internal Mechanical Characteristics of Angular Contact Ball Bearings under Elastohydrodynamic Lubrication[J]. Tribology, 2022, 42(1): 85-94(in Chinese)
    [15] [14] Zhang X , Wang Q , He T . Transient and steady-state viscoelastic contact responses of layer-substrate systems with interfacial imperfections[J]. Journal of the Mechanics and Physics of Solids, 2020, 145(3):104170
    [16] [15] Johnson K L. Contact mechanics[M]. Cambridge university press, 1987.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:228
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-16
  • 最后修改日期:2023-03-16
  • 录用日期:2023-03-20
文章二维码