基于高速公路场景的换道驾驶行为研究
DOI:
CSTR:
作者:
作者单位:

1.重庆大学 机械传动国家重点实验室 重庆;2.招商局检测车辆技术研究院有限公司 重庆

作者简介:

通讯作者:

中图分类号:

U448.213

基金项目:

国家自然科学基金资助项目(51875061)


Research on lane change driving behavior based on highway scene
Author:
Affiliation:

1.State Key Laboratory of Mechanical Transmission,Chongqing University;2.China Merchants Testing Vehicle Technology Research Institute Co,Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深入研究人类驾驶员的驾驶行为和习性,对于推进智能汽车的拟人化决策规划,改善驾驶安全性具有重要意义。针对高速公路这一典型场景,基于NGSIM数据集提取有效表征换道驾驶行为的特征参数,分析换道驾驶行为与驾驶参数的相关性,量化驾驶行为特性,建立了基于GMM-HMM的换道意图识别模型。研究结果表明:该模型识别准确率较高,在换道点1s之前的换道行为识别准确率达到95.6%,在有换道意图的时刻识别准确率超过80%,可应用于智能汽车换道策略的拟人化设计,有效降低换道风险,改善驾驶安全。

    Abstract:

    In-depth study of human driver's driving behavior and habits has significant implications for promoting the anthropomorphism of decision-making in intelligent vehicles and improving driving safety. For the typical scenario of highways, effective feature parameters that characterize lane-changing driving behavior were extracted based on the NGSIM dataset. The correlation between lane-changing driving behavior and driving parameters was analyzed, and driving behavior characteristics were quantified. A GMM-HMM-based lane-changing intention recognition model was established. The research results show that the model has a high recognition accuracy. The recognition accuracy of lane-changing behavior 1 second before the lane-changing point reaches 95.6%. The accuracy of recognizing lane-changing intentions exceeds 80% when there is the intention to change lanes. The model can be applied to the anthropomorphic design of intelligent vehicle lane-changing strategies, effectively reducing lane-changing risks and improving driving safety.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-17
  • 最后修改日期:2023-05-20
  • 录用日期:2023-05-29
  • 在线发布日期:
  • 出版日期:
文章二维码