基于GaN HEMT寄生电容的BPNN参数建模的研究
作者单位:

1.江南大学理学院;2.无锡职业技术学院汽车与交通学院

中图分类号:

TN710

基金项目:

国家自然科学基金(No.61974056); 江苏省重点研发社会发展项目(No. BE2020756)


Research on BPNN Modeling Based on GaN HEMT Parasitic Capacitance
Author:
Affiliation:

1.School of Science, Jiangnan University.;2.Wuxi Institute of Technology

Fund Project:

国家自然科学基金(No.61974056); 江苏省重点研发社会发展项目(No. BE2020756) 国家自然科学基金(No.61974056); 江苏省重点研发社会发展项目(No. BE2020756) National Natural Science Foundation of China (No.61974056); Key R&D Social Development Project in Jiangsu Province (No. BE2020756)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于GaN HEMT的寄生电容在漏源电压的影响下具有非线性特征。本文提出一种于模拟寄生电容参数与栅源电压的映射关系的反向传播神经网络(BPNN)参数拟合法。基于GaN HEMT大信号参数模型和数据手册提取寄生电容关于漏源电压变化的参数取样点作为神经网络模型的输入层。该神经网络模型通过将误差值反馈至输出端以调整神经元的权重,以产生一个能够拟合出系统映射关系的神经网络训练集,以预测GaN HEMT实际开启状态下栅源电压和寄生电容的关系,并将所得实验数据连接至输入层进行传递。最后得到BPNN模型的预测相对误差分别为9%,证明了该方法模型预测的准确性。该方法简化了物理模型对参数提取的复杂度,可用于分析和预测GaN HEMT器件的误导通情况。

    Abstract:

    This article proposes a backpropagation neural network(BPNN) parameter fitting method to simulate the mapping relationship between the parasitic capacitance parameters and the gate source voltage of GaN HEMT due to its nonlinear characteristics under the influence of drain source voltage. The input layer of the neural network model is based on the GaN HEMT large signal parameter model and data manual, which extracts the parameter sampling points of parasitic capacitance related to the variation of leakage source voltage. This neural network model adjusts the weights of neurons by supplying error values to the output end to create a neural network training set that can adapt to the system mapping relationship, predict the connection between gate source voltage and parasitic capacitance in the actual open state of GaN HEMT, and link the acquired experimental data to the input layer for transmission. The BPNN model yielded a relative prediction error of 9%, demonstrating the efficacy of this method in predicting the behaviors of GaN HEMT devices. This technique simplifies the complexity of parameter extraction from physical models, thus facilitating the analysis and prediction of misleading situations.

    参考文献
    [1] 刘宇武,王军.基于人工神经网络的GaN HEMTs建模与参数提取.电子元件与材料[J], 2022,41(07):713-718.
    [2] 曹通,秦世清,何映谊.集成式GaN单开关管功率因数校正变换器.重庆大学学报[J/OL]: 2023,02(21):1-14.
    [3] N Modolo, S W Tang, H J Jiang, et al. A Novel Physics-Based Approach to Analyze and Model E-Mode p-GaN Power HEMTs [J]. IEEE Transactions on Electron Devices, 2021,68(4):1489-1494.
    [4] 郑良川,王军.GaN HEMTs小信号等效电路建模与参数直接提取.电子元件与材料[J], 2021,40(01) :72-76.
    [5] 王学鹏. AlGaN/GaN HEMT建模与电路设计[D].西安电子科技大学, 2015.
    [6] T Zhu, F Zhuo, F Zhao, et al. Quantitative Model-Based False Turn-on Evaluation and Suppression for Cascode GaN Devices in Half-Bridge Applications [J]. IEEE Transactions on Power Electronics, 2019, 34(10):10166-10179.
    [7] 姜飞燕. GaN HEMT功率器件的非线性行为模型建模方法研究[D].西安电子科技大学, 2018.
    [8] 王佳佳. AlGaN/GaN HEMT器件模型的建立与验证[D].西安电子科技大学, 2017.
    [9] 陶源.开关HEMT建模研究[D].电子科技大学, 2020.
    [10] W R Hu, Yong X Guo, et al. An Evolutionary Multilayer Perceptron-Based Large-Signal Model of GaN HEMTs Including Self-Heating and Trapping Effects [J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(2):1146-1156.
    [11] Y Jia, Y Xu, Z Wen, et al. Analytical gate capacitance models for large-signal compact model of AlGaN/GaN HEMTs [J]. IEEE Trans. Electron Devices, 2019,66(1):357–363.
    [12] 陈阳,姚丽萍,谢守勇.基于BP神经网络的静液压变速器控制研究.重庆大学学报[J],2021,44(05):104-114.
    [13] H R Luo, X Yan, J Y Zhang et al. A Neural Network-Based Hybrid Physical Model for GaN HEMTs [J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 4816 - 4826
    [14] A Jarndal, et al. On neural networks based electrothermal modeling of GaN devices [J]. IEEE Access, 2019,7:94205–94214.
    [15] W R Hu, H Luo, X Yan et al. An Accurate Neural Network-Based Consistent Gate Charge Model for GaN HEMTs by Refining Intrinsic Capacitances [J]. IEEE Transactions on Microwave Theory and Techniques, 2021,69(7):3208-3218.
    [16] D Maafri, A A Saadi, M A Sabbagh, et al. A New High-Frequency HEMT GaN Extrinsic Capacitance Extraction Technique [J]. IEEE Microwave and Wireless Components Letters, 2022,32(4):305-307.
    [17] W Zhang, H Zhu, H Yue, et al. An angelov large-signal FET model up to 67 GHz [J]. IEEE Trans. Electron Devices, 2019,66(6): 2577–2582.
    [18] T M Martin, A Santarelli, G. P. Gibiino, et al. Automatic extraction of measurement-based large-signal FET models by nonlinear function sampling [J]. IEEE Trans. Microw. Theory Techn, 2020,68(5):1627–1636.
    [19] 许媛,黄伟,何宁业.基于增强型GaN HEMT的半桥开关电路设计与测试.黄山学院学报[J], 2019,21(03):30-33.
    [20] Z. Qi, Y. Pei, L. Wang et al. An Accurate Datasheet-Based Full-Characteristics Analytical Model of GaN HEMTs for Deadtime Optimization [J]. IEEE Transactions on Power Electronics, 2021,36(7):7942-7955.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:180
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-02-21
  • 最后修改日期:2023-06-19
  • 录用日期:2023-06-25
文章二维码