机架柔性对双风轮风电机组传动链固有特性影响分析
作者:
作者单位:

1.重庆大学机械传动国家重点实验室;2.中国船舶重工集团海装风电股份有限公司;3.中国华能集团清洁能源院技术研究院

中图分类号:

TH113

基金项目:

国家重点研发计划(2020YFB1506600);山西省重点研发计划项目(202102060301017);广东省重点研发计划项目(2021B0101230002)


Influences of frame flexibility on natural characteristics of dual-rotor wind turbine drivetrain
Author:
Affiliation:

1.State Key Laboratory of mechanical transmission,Chongqing University;2.China shipbuilding group haizhuang Wind Power Co,Ltd;3.China Huaneng Group Clean Energy Institute Technology Research Institute

Fund Project:

Supported by National key research and development plan (2015121024); Supported by Key research and development plan of Shanxi Province (202102060301017); Supported by Key research and development plan of Guangdong Province (2021B0101230002)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    双风轮风电机组是一种新型水平轴式风电机组,可以利用前风轮尾流发电,风能利用系数高,然而为了减少前后风轮间流场干涉效应,传动链轴向跨距较单风轮机组更长,造成长跨距柔性机架多点弹性支撑下双风轮风电机组传动链模态特性复杂,潜在共振风险高。本文考虑机架柔性及其与传动链间弹性支撑,建立了双风轮风电机组传动链刚柔耦合动力学模型,分析了传动链耦合振动模式,研究了机架柔性对传动链固有特性的影响。研究结果表明:双风轮风电机组传动链前两阶扭振固有频率分别为5.63 Hz和6.01 Hz,分别对应后、前风轮传动链第一阶扭振固有频率;双风轮风电机组传动链共存在3类系统振动模式,包括前或后风轮传动链局部振动模式、前或后风轮传动链耦合振动模式以及前与后风轮传动链耦合振动模式;当系统各构件的模态能量主要集中在非扭振方向时,机架柔性会使各构件模态能量朝同侧传动链其余构件或异侧传动链构件转移。

    Abstract:

    Dual-rotor wind turbine is a new type of horizontal axis wind turbine, which can use the wake of the front wind turbine to generate electricity and has a high utilization coefficient of wind energy. However, in order to reduce the flow field interference effect between the front and the rear wind turbine, the axial span of the transmission chain is longer than that of the single wind turbine, resulting in complex transmission chain modal characteristics and high potential resonance risk under the multi-point elastic support of the long-span flexible frame. In this paper, considering the frame flexibility and elastic support between the frame and the transmission chain, a rigid-flexible coupling dynamic model of the transmission chain of dual-rotor wind turbine was established, the coupling vibration mode of the transmission chain was analyzed, and the influence of frame flexibility on the inherent characteristics of the transmission chain was studied. The results show that the first two torsional vibration natural frequencies of the wind turbine transmission chain are 5.63Hz and 6.01Hz respectively, which correspond to the first torsional vibration natural frequencies of the rear and front wind turbine transmission chains respectively. There are three vibration modes in the drive chain of dual-rotor wind turbines, including the local vibration mode of the front or rear wind turbine drive chain, the coupled vibration mode of the front or rear wind turbine drive chain and the coupled vibration mode of the front and rear wind turbine drive chain. When the modal energy of each component of the system is mainly concentrated in the non-torsional direction, the frame flexibility will make the modal energy of each component transfer to the other components of the same side drive chain or the other side drive chain components.

    参考文献
    [1] Liu Y Q, Long Q, Yang Y P, et al. Modal Analysis of High-Speed Helical Gear of Wind Turbine Driven System[C]. Qingdao: proceedings of the International Conference on Information, Electronic and Computer Science, 2009: 351-354.
    [2] Wang J G, Wang Y, An Y T, et al. Research on Natural Characteristics of Helical Gear in Gearbox for Wind Turbine Generator[C]. Switzerland: Key Engineering Materials Vols, 2011: 2054-2057.
    [3] Eritenel T, Parker R G. Modal properties of three-dimensional helical planetary gears[J]. Journal of Sound and Vibration, 2009, 325(1-2): 397-420.
    [4] Zhu C C, Chen S, Song C S, et al. Dynamic analysis of a megawatt wind turbine drive train[J]. J Mech Sci Technol, 2015, 29(5): 1913-1919..
    [5] M Todorov, I Dobrev, F Massouh. Analysis of torsional oscillation of the drive train in horizontal-axis wind turbine[C]. France: EPE Chapter ‘Electric Drives’ Joint Symposium, 2009: 1-7.
    [6] Liu Y Q, Long Q, Yang Y P. Dynamic Analysis of Multistage Gear Driven System of Wind Turbine[C]. Switzerland: Applied Mechanics and Materials Vols, 2010: 1706-1710.
    [7] Zhu C C, Xu X Y, Liu H J, et al. Research on dynamical characteristics of wind turbine gearboxes with flexible pins[J]. Renew Energy, 2014, 68: 724-732.
    [8] Xing Y, Moan T. Multi-body modelling and analysis of a planet carrier in a wind turbine gearbox[J]. Wind Energy, 2013, 16(7): 1067-1089.
    [9] Jin X, Li L, Ju W B, et al. Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines[J]. Renew Energy, 2016, 90: 336-351.
    [10] Peeters JLM, Vandepitte D, SAS P. Analysis of internal drive train dynamics in a wind turbine[J]. Wind Energy, 2006, 9(1-2): 141-161.
    [11] Helsen Jan, Peeters P, V KLAAS, et al. The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique[J]. Renewable Energy, 2014, 69: 336-346.
    [12] 何玉林, 黄伟, 李成武, 等. 大型风力发电机传动链多柔体动力学建模与仿真分析[J]. 机械工程学报, 2014, 50(01): 61-69.e Y L, Huang W, Li C W, et al. Dynamic Modeling and Simulation analysis of multi-flexible body for transmission chain of large wind turbine[J]. Journal of Mechanical engineering, 2014, 50(01): 61-69.
    [13] Tan J J, Zhu C C, Song C S, et al. Study on the dynamic modeling and natural characteristics of wind turbine drivetrain considering electromagnetic stiffness [J]. Mechanism and Machine Theory, 2019, 134: 541-561.
    [14] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(07): 341-351.an J J, Zhu C C, Song C S, et al. Analysis of rigid-flexible coupling dynamic characteristics of wind turbine transmission chain[J]. Acta energiae solaris sinica, 2020, 41(07): 341-351.
    [15] 杜静, 秦月, 李成武. 风力发电机组传动链动力学建模与仿真分析[J]. 太阳能学报, 2014, 35(10): 1950-1957.u J, Qin Y, Li C W. Dynamic Modeling and Simulation Analysis of wind turbine transmission chain[J]. Acta energiae solaris sinica, 2014, 35(10): 1950-1957.
    [16] 赵萍, 杨军, 肖家余, 等. 风力发电机组传动链振动特性研究及试验[J]. 太阳能学报, 2016, 37(08): 2088-2094.hao P, Yang J, Xiao J Y, et al. Study and test on Vibration characteristics of transmission chain of wind turbine[J]. Acta energiae solaris sinica, 2016, 37(08): 2088-2094.
    [17] Zhao P, X G L, J Y, et al. Theoretical and Experimental Research on Vibration Characteristics of the Doubly-Fed Induction Generator for Wind Turbine[C]. Zhuzhou: 2016 International Conference on Cybernetics, Robotics and Control, 2016: 60-64.
    [18] Zheng L M, Li H X, Chen Y. Analysis and Optimization of Flexible Supported Drive Train in a Wind Turbine[C]. Switzerland: Applied Mechanics and Materials Vols, 2012: 2861-2865.
    [19] Zhang S L, Zhu C C, Song C S, et al. Natural characteristic analysis of wind turbine drivetrain considering flexible supporting[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(5): 842-856.
    [20] 张盛林,朱才朝,宋朝省,等. 基于柔性支撑的风机传动链动态特性研究[J]. 振动与冲击, 2016, 35(17): 44-51.hang S L, Zhu C C, Song C S, et al. Study on Dynamic characteristics of fan transmission chain based on flexible support[J]. Journal of Vibration and Shock, 2016, 35(17): 44-51.
    [21] Oliver T Filsoof, Morten H Hansen, Anders Yde, et al. Dynamic modeling and stability analysis of a dual-rotor wind turbine[C]. Quebec: Proceedings of the ASME 2018 International Design Engineering, 2018: 26-29.
    [22] Bernd Simeon. On Lagrange multipliers in flexible multibody dynamics[J]. Computer methods in applied mechanics and engineering, 2006, 195(50-51): 6993-7005.
    [23] 赵宇豪, 魏静, 张世界,等. 结构柔性对大型风电机组齿轮传动系统动态响应的影响分析[J]. 太阳能学报, 2021, 42(12): 174-182.hao Y H, Wei J, Zhang S J, et al. Influence analysis of structural flexibility on dynamic Response of gear transmission System of large wind turbine[J]. Acta energiae solaris sinica,2021, 42(12): 174-182.
    [24] Lai J B, Liu Y F, Xu X Y, et al. Dynamic modeling and analysis of Ravigneaux planetary gear set with unloaded floating ring gear[J]. Mechanism and Machine Theory, 2022, 170.
    [25] 马德福, 赵荣珍, 应玲君. 风电机组主轴承的刚柔耦合动态响应仿真分析[J]. 太阳能学报, 2019, 40(10): 2953-2959.a D F, Zhao R Z, Ying L J. Simulation analysis of rigid-flexible coupling dynamic response of main bearing of wind turbine[J]. Acta energiae solaris sinica, 2019, 40(10): 2953-2959.
    [26] GL-2010.Guideline for the Certification of Wind[S]. Germany: Germanischer Lloyd and the Wind Energy Committee, 2010.
    [27] 李浪. 大型风力发电机组整机动力学建模与性能预测分析[D]. 重庆: 重庆大学, 2016.i L. Dynamic Modeling and performance prediction analysis of large wind turbine[D].Chongqing: Chongqing University, 2016.
    [28] 赵振宙. 风力机原理与应用[M]. 中国水利水电出版社, 2011: 252.Zhao Z Y. Principles and Applications of wind turbines[M]. China Water Resources and Hydropower Press, 2011.
    [29] ISO 6336-1:2019.Calculation of load capacity of spur and helical gears(edition 2)[S]. Switzerland: ISO copyright office , 2019.
    [30] 赵榕梅. 基于多柔体建模的风电机组传动链动态设计评估方法[D]. 北京:华北电力大学, 2020.hao R M. Dynamic design evaluation method of wind turbine transmission chain based on multi-flexible body modeling[D].Beijing: North China Electric Power University, 2020.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-13
  • 最后修改日期:2023-04-28
  • 录用日期:2023-05-12
文章二维码