基于mRMR-IPSO的短期负荷预测双阶段特征选择
作者:
作者单位:

1.国网湖北超高压公司;2.国网浙江省电力有限公司湖州供电公司

基金项目:

国网湖北电力公司科技项目:(521520220006)


Dual-stage feature selection for short-term load forecasting based on mRMR-IPSO
Author:
Affiliation:

1.State Grid Hubei Extra High Voltage Company;2.State Grid Zhejiang Electric Power Co., Ltd. Huzhou Power Supply Company

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法—mRMR-IPSO双阶段法。利用最大相关最小冗余(mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;然后采用基于改进的粒子群优化算法(IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明所提方法能在对原始特征集大幅降维的情况下,提升预测精度。

    Abstract:

    Power load has the characteristics of time and space change and it is affected by many factors. In short-term load forecasting, excessive input features will cause dimensional disasters and lead to poor model prediction performance. Therefore, it is very important to choose a reasonable input feature set. The article proposes a new feature selection method for short-term load forecasting—mRMR-IPSO two-stage method. Use the Max-Relevance and Min-Redundancy (mRMR) criterion to sort the original features, consider the correlation between the input and output features and the redundancy between the input features, filter out some of the later ranked features, and initially select the ones that have a significant impact on the prediction effect Feature subsets; Then, a search strategy based on the improved particle swarm optimization (IPSO) algorithm is adopted, and the prediction accuracy of the LightGBM model is used as the fitness function to select the primary feature subsets to obtain the optimal feature subsets. The results of calculation examples show that the proposed method can improve the prediction accuracy while greatly reducing the original feature set.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-25
  • 最后修改日期:2023-07-12
  • 录用日期:2023-07-17
文章二维码