基于改进乌鸦搜索算法的无人艇新型路径规划策略
DOI:
CSTR:
作者:
作者单位:

1.宁德师范学院;2.闽江学院;3.福州大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学青年基金项目(52105053),福建省自然科学基金项目(2022J011125),闽江学院人才引进项目 (MJY20029)


A New Path Planning Strategy for Unmanned Surface Vehicle Based on Improved Crow Searching Algorithm
Author:
Affiliation:

1.Ningde Normal University;2.Minjiang University;3.Fuzhou University

Fund Project:

National Natural Science Youth Fund Project(52105053), Fujian Natural Science Foundation Project(2022J011125), Minjiang University Talent Introduction Project(MJY20029)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鉴于无人艇的实际航行需求,所规划的路径应满足顺滑性及经济性,为此提出一种基于改进乌鸦搜索算法的直线与圆弧转弯相结合的新型路径规划策略。首先,提出了一种新型路径拟合方法,用于优化转向点的数量,并处理转向点圆弧过渡的问题。该方法克服了B样条曲线路径造成无人艇频繁调整方向的问题,同时保证无人艇在保持航速稳定的情况下实现转向,从而提高了航行的稳定性和经济性。然后,在此基础上提出了一种改进的乌鸦搜索算法,用于优化路径转向点的位置。算法的改进主要体现在三个方面:采用反向学习策略对初始种群进行优化,以提高初始种群质量及多样性;提出一种动态变化的意识概率,以提高算法初段的全局搜索能力和末段的局部搜索能力;采用莱维飞行策略改进随机搜索方法,以改善搜索的方向性及有效性。仿真结果表明:所提出的新型路径拟合方法优于B样条曲线拟合方法和直线段拟合方法;在采用这种拟合方法的基础上,利用改进乌鸦搜索算法、标准乌鸦搜索算法、差分进化算法以及遗传算法对路径转向点位置进行优化,迭代计算和方差分析结果表明所提出的改进乌鸦搜索算法相较于其它三种算法具有更高的收敛精度和鲁棒性,能更高效处理无人艇路径规划的实际问题。

    Abstract:

    Considering the actual navigation requirements of unmanned surface vehicles, the planned path should meet the requirements of smoothness and economy. Therefore, a new path planning strategy based on improved crow search algorithm combining straight line and circular arc turns is proposed. Firstly, a new path fitting method is proposed to optimize the number of turning points and handle the problem of arc transition at turning points. This method overcomes the problem of frequent direction adjustment caused by B-spline curve paths for unmanned surface vehicle, while ensuring that unmanned surface vehicle can achieve steering while maintaining a stable speed, thereby improving navigation stability and economy. Then, based on this, an improved crow search algorithm is proposed to optimize the location of path turning points. The improvement of the algorithm is mainly reflected in three aspects: using a reverse learning strategy to optimize the initial population to improve the quality and diversity of the initial population; A dynamically changing awareness probability is proposed to improve the global search ability of the initial segment and the local search ability of the final segment of the algorithm; The Levy flight strategy is used to improve the random search method to improve the directionality and effectiveness of the search. The simulation results show that the proposed new path fitting method is superior to the B-spline curve fitting method and the straight line segment fitting method; Based on this fitting method, the improved crow search algorithm, the standard crow search algorithm, the differential evolution algorithm, and the genetic algorithm are used to optimize the location of the path turning point. The iterative calculation and variance analysis results show that the proposed improved crow search algorithm has higher convergence accuracy and robustness compared to the other three algorithms, and can more effectively handle practical problems of unmanned surface vehicle path planning.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-29
  • 最后修改日期:2023-06-04
  • 录用日期:2023-06-14
  • 在线发布日期:
  • 出版日期:
文章二维码