电磁铁传热特性及散热优化的数值模拟研究
作者:
作者单位:

四川航天烽火伺服控制技术有限公司

中图分类号:

TK121

基金项目:

国家重点研发计划项目(2019YFB2005104);成都市重大科技创新项目(2021-YF08-00012-GX);


Numerical Simulation Study of Electromagnet Heat Transfer Characteristics and Heat Dissipation Optimization
Author:
Affiliation:

Sichuan Aerospace Fenghuo Servo Control Technology Corporation,Chengdu

Fund Project:

National key research and development program (2019YFB2005104); Major Science and Technology Innovation Projects in Chengdu (2021-YF08-00012-GX).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | | | |
  • 文章评论
    摘要:

    电磁铁作为电液控制系统的核心液压元件广泛应用于航空航天和石油工业等领域,其工作产生的焦耳热和电磁损耗会导致温度迅速升高、局部热应力和不均匀膨胀变形,严重影响稳定性和使用寿命。本文采用有限元软件研究电磁铁温度、应力及变形的演化规律,分析导热套筒散热与强制对流散热对其热性能的影响规律。结果表明:随线圈功率的增大电磁铁的最大温度、热应力和变形量均线性增大;随套筒厚度的增加,稳态的最大温度、变形量和导热量线性减小,温降幅度为12.5℃/mm;随流速的增加,最大温度、热应力和变形量显著减小,温降幅度45.5℃/(m/s),说明增强导热和对流均能提高电磁铁热性能且对流更为显著。

    Abstract:

    As the core hydraulic components of electro-hydraulic control systems, electromagnets are widely used in aerospace and petroleum industries. The Joule heat and electromagnetic loss generated by its operation will lead to rapid temperature increase, local thermal stress and uneven expansion deformation, which will seriously affect the stability and service life. The evolution law of temperature, stress and deformation of electromagnet was studied by finite element software, and the influence law of heat dissipation of heat conduction sleeve and forced convection heat dissipation on its thermal performance was analyzed. The results show that the maximum temperature, thermal stress and deformation of the electromagnet increase linearly with the increase of the coil power, and with the increase of sleeve thickness, the steady-state maximum temperature, deformation and thermal conductivity decrease linearly, and the temperature drop is 12.5℃/mm. Moreover, With the increase of flow rate, the maximum temperature, thermal stress and deformation decreased significantly, and the temperature drop range was 45.5℃/(m/s). It shows that both enhanced heat conduction and convection can improve the thermal performance of electromagnet, and convection is more significant.

    参考文献
    [1] Bayat F, Tehrani A F, Danesh M. FINITE ELEMENT ANALYSIS OF PROPORTIONAL SOLENOID CHARACTERISTICS IN HYDRAULIC VALVES[J]. International Journal of Automotive Technology, 2012, 13(5): 809-816.
    [2] Angadi S V, Jackson R L. A critical review on the solenoid valve reliability, performance and remaining useful life including its industrial applications[J]. Engineering Failure Analysis, 2022, 136.
    [3] 石晓川,孙光晓,杜冬锋等.浅谈机械泵船舶发动机停车电磁铁的应用[J].内燃机与配件,2022(11):28-30.HI Xiaochuan, SUN Guangxiao, DU Dongfeng, et al. Discussion on the application of stopping electromagnet for mechanical pump Marine engine[J]. Internal Combustion Engine Parts, 2022(11):28-30.
    [4] Noergaard C, Bech M M, Andersen T O, et al. Flow Characteristics and Sizing of Annular Seat Valves for Digital Displacement Machines[J]. Modeling Identification and Control, 2018, 39(1): 23-35.
    [5] Zhang B, Zhong Q, Ma J E, et al. Self-correcting PWM control for dynamic performance preservation in high speed on/off valve[J]. Mechatronics, 2018, 55: 141-150.
    [6] Xue G M, Zhang P L, He Z B, et al. Design and experimental study of a novel giant magnetostrictive actuator[J]. Journal of Magnetism and Magnetic Materials, 2016, 420: 185-191.
    [7] Gosselin L, Bejan A. Constructal thermal optimization of an electromagnet[J]. International Journal of Thermal Sciences, 2004, 43(4): 331-338.
    [8] Yang S, Ordonez J C. Concurrent Solenoid Design Optimization From Thermal and Electromagnetic Standpoints[J]. Ieee Transactions on Applied Superconductivity, 2016, 26(4).
    [9] Wei S H, Chen L G, Sun F R. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization[J]. Science in China Series E-Technological Sciences, 2009, 52(10): 2981-2989.
    [10] Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization of an electromagnet[J]. Journal of Applied Physics, 2009, 105(9).
    [11] Chen L, Wei S, Xie Z, et al. Constructal complex-objective optimization of electromagnets based on maximization of magnetic induction and minimization of entransy dissipation rate[J], 2015, 6(4): 391.
    [12] Son K, Lee C J I S, Measurement, Technology. Temperature measurement of high-density winding coils of electromagnets[J], 2012, 6(1): 1-5.
    [13] Liu Y, Xi J, Meng F J I J O V D. Temperature prediction and winding temperature measurement of a solenoid valve[J], 2020, 82(1-4): 187-204.
    [14] Liu Y F, Mao M C, Xu X Y, et al. Multi-physics coupled thermo-mechanics analysis of a hydraulic solenoid valve[C]. International Conference on Mechatronics and Industrial Informatics (ICMII 2013), 2013: 102-107.
    [15] Dolan A-I J a O T U O C, Series: Electrical Engineering. Optimal shape of DC electromagnet[J], 2017, (40): 9-13.
    [16] Li J, Xiao M, Sun Y, et al. Failure mechanism study of direct action solenoid valve based on thermal-structure finite element model[J], 2020, 8: 58357-58368.
    [17] 刘少克.磁悬浮列车用混合悬浮电磁铁温度场建模与仿真[J].机车电传动,2011(06):32-34.IU Shaoke. Modeling and Simulation of temperature field of hybrid suspension electromagnet for maglev train[J]. Electric drive for locomotives, 2011(06):32-34.
    [18] 何维林,何云风.箔绕与线绕电磁铁温度场仿真计算研究[J].时代农机,2019,46(05):52-54.E Weilin, HE Yunfeng. Simulation and Calculation of temperature field of foil-wound and Wire-wound electromagnets[J]. Times Agricultural Machinery, 2019,46(05):52-54.
    [19] 王春民, 沙超, 孙磊等. 基于ANSYS的直流电磁铁温度场仿真分析[J].液压与气动, 2015, (12): 83-86.ANG Chun min, SHA Chao, SUN Lei, et al. Simulation Temperature Field of DC Electromagnet Based on ANSYS[J]. CHINESE HYDRAULICS PNEUMATICS, 2015, (12): 83-86.
    [20] Maxwell J C. A dynamical theory of the electromagnetic field[M]. Wipf and Stock Publishers, 1996.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:192
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-06
  • 最后修改日期:2023-06-24
  • 录用日期:2023-07-04
文章二维码