拉伸速率与拉伸温度对PVDF-HFP薄膜压电性能的影响
作者:
作者单位:

重庆大学 航空航天学院

中图分类号:

TB 3

基金项目:

中央高校基本科研业务费 (2020CDJQY-A008)


Effects of stretching rate and temperature on the piezoelectric properties of PVDF-HFP thin films
Author:
Affiliation:

College of Aerospace Engineering,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    拉伸是提高PVDF-HFP薄膜压电性能最有效的方法之一,本文采用溶液浇铸法制备PVDF-HFP压电薄膜,以拉伸速率和拉伸温度为变量,研究了薄膜拉伸前后形貌变化以及晶体结构的变化。结果表明,沿拉伸方向的应力可以迫使基体内部结构由球晶转变为纤维状晶体,从而促使非极性α相转变成极性β相,在拉伸伸长率为5,拉伸温度为60 ℃,拉伸速率为10 mm/min时,薄膜的β相相对含量超过90 %。在Emax = 60 MV/m的最大极化电场下,其标准开环电压达到1.5 V,在此拉伸工艺下,将最大极化电场强度提升到Emax = 100 MV/m,薄膜的标准开环电压达到2.24 V,最大极化电场的提高使基体内部固有偶极矩取向更充分,压电性能更优异。

    Abstract:

    The stretching is one of the most effective methods to improve the piezoelectric property of PVDF-HFP films. In this paper, PVDF-HFP piezoelectric films were prepared by solution casting method. The evolution in morphology and crystal structure of the films during stretching was studied by adjusting stretching rate and stretching temperature. The results indicate that the stress along the tensile direction can force the internal structure of the matrix to transform from spherical crystals to fibrous crystals, thereby promoting non-polar α-phase transition to polar β-phase. With the parameters that stretching elongation 5, the stretching temperature 60 ℃ and the stretching rate 10 mm/min, the relative content of β-phase in this film exceeds 90 %, the calibrated open circuit voltage reaches 1.5 V under the maximum poling electric field of Emax = 60 MV/m. Furthermore, when the maximum poling electric field increases to Emax= 100 MV/m, the calibrated open circuit voltage of the film increases to 2.24 V. The higher maximum poling electric field results in a more complete orientation of the inherent dipole moment inside the matrix and better piezoelectric performance.

    参考文献
    [1] Kim G H, Hong S M, Seo Y. Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: beta-phase development[J]. Physical Chemistry Chemical Physics, 2009, 11(44): 10506-10512.
    [2] He F A, Lin K, Shi D L, et al. Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching[J]. Composites science and technology, 2016, 137: 138-147.
    [3] Sencadas V, Gregorio Jr R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch[J]. Journal of Macromolecular Science, 2009, 48(3): 514-525.
    [4] Li L, Zhang M, Rong M, et al. Studies on the transformation process of PVDF from alpha to beta phase by stretching[J]. Rsc Advances, 2014, 4(8): 3938-3943.
    [5] Debili S, Gasmi A, Bououdina M. Synergistic effects of stretching/polarization temperature and electric field on phase transformation and piezoelectric properties of polyvinylidene fluoride nanofilms[J]. Applied Physics A, 2020, 126: 1-9.
    [6] Magniez K, Krajewski A, Neuenhofer M, et al. Effect of drawing on the molecular orientation and polymorphism of melt-spun polyvinylidene fluoride fibers: Toward the development of piezoelectric force sensors[J]. Journal of Applied Polymer Science, 2013, 129(5): 2699-2706.
    [7] Jin Z, Lei D, Wang Y, et al. Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films[J]. Nanotechnology Reviews, 2021, 10(1): 1009-1017.
    [8] 吴良科. PVDF-HFP 复合材料压电性能研究[D]. 浙江大学, 2016.
    [9] Guo H, Li J, Meng Y, et al. Stretch‐induced stable‐metastable crystal transformation of PVDF/graphene composites[J]. Polymer Crystallization, 2019, 2(4): e10079.
    [10] Kim T H, Jee K Y, Lee Y T. The improvement of water flux and mechanical strength of PVDF hollow fiber membranes by stretching and annealing conditions[J]. Macromolecular Research, 2015, 23(7): 592-600.
    [11] Lee S. Carbon nanofiber/poly(vinylidene fluoride-hexafluoro propylene) composite films: The crystal structure and thermal properties with various drawing temperatures[J]. Fibers and Polymers, 2013, 14(3): 441-446.
    [12] Lanceros-Mendez S, Mano J F, Costa A M, et al. FTIR and DSC studies of mechanically deformed β-PVDF films[J]. Journal of Macromolecular Science, Part B, 2001, 40(3-4): 517-527.
    [13] 闫静静, 肖长发, 王纯, 等. 拉伸过程中聚偏氟乙烯纤维晶体结构变化[J]. 高分子学报, 2019 (7): 752-760.
    [14] Marega C, Marigo A. Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride)[J]. European Polymer Journal, 2003, 39(8): 1713-1720.
    [15] Steinmann W, Walter S, Seide G, et al. Structure, properties, and phase transitions of melt-spun poly(vinylidene fluoride) fibers[J]. Journal of Applied Polymer Science, 2011, 120(1): 21-35.
    [16] 黄楷焱. 碳纳米管/炭黑协同增强纳米复合材料的力-电效应研究 [D]. 重庆大学, 2021.
    [17] Servet B, Broussoux D, Micheron F. Stretching induced γ-β transition in poly (vinylidene fluoride)[J]. Journal of Applied Physics, 1981, 52(10): 5926-5929.
    [18] Sencadas V, Moreira M V, Lanceros-Méndez S, et al. α-to β Transformation on PVDF films obtained by uniaxial stretch[C]. Materials science forum. Trans Tech Publications Ltd, 2006, 514: 872-876.
    [19] 潘柏. 铁电薄膜电滞回线的动力学标度 [D]. 南京大学, 2003.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪 洋,吴良科.拉伸速率与拉伸温度对PVDF-HFP薄膜压电性能的影响[J].重庆大学学报,2024,47(11).

复制
分享
文章指标
  • 点击次数:106
  • 下载次数: 47
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-09
  • 最后修改日期:2023-05-17
  • 录用日期:2023-05-22
  • 在线发布日期: 2025-02-25
文章二维码