基于复杂运动任务下的脑电信号特征提取及分类研究
作者:
作者单位:

西安建筑科技大学 信息与控制工程学院

中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(12002251)。


Research on feature extraction and classification of EEG signals based on complex motor tasks
Author:
Affiliation:

1.School of Information and Control Engineering,Xi &2.amp;3.#39;4.&5.an University of Architecture Technology,Xi &6.an 710055;7.P. R. China;8.School of Information and Control Engineering,Xi '9.'10.an University of Architecture Technology,Xi '

Fund Project:

National Natural Science Foundation Project (12002251)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    脑机接口技术(BCI)作为人脑与外部接口技术连接的关键技术,近年来受到了越来越多学者的广泛关注,应用BCI进行运动检测、行为控制等研究已经成为了BCI系统的重点关注对象;然而,随着运动复杂性的提高,对于BCI系统提出了更高的要求,目前关于复杂运动任务下的脑电特征提取和分类的研究仍存在运动相关任务实验范式简单、复杂度低的问题,基于此,本文进行复杂运动任务下的脑电信号采集实验,实验设备的安装调试以及实验的设计完全依据国际标准进行,同时通过使用皮尔逊系数矩阵、邻接矩阵等方法构建功能性网络进行EEG的特征提取,并将提取到的特征通过构建的图卷积神经网络(Graph Convolutional Neural Network,GCNs-Net)模型,完成复杂运动任务下的脑电信号分类,该模型通过脑电和行为指标综合评估分类准确率,为脑机控制中运动脑电辩识的稳定性与准确性领域提供了可行的思路与方法。

    Abstract:

    Brain-computer interface technology (BCI), as the key technology to connect human brain with external interface technology, has received extensive attention from more and more scholars in recent years. Research on motion detection and behavior control using BCI has become the focus of BCI system. However, with the increasing complexity of motion, higher requirements are put forward for BCI system. The current research on electroencephalogram feature extraction and classification under complex motion tasks still has the problems of simple experimental paradigm and low complexity in motion-related tasks. Based on this, this paper conducts the electroencephalogram acquisition experiment under complex motion tasks, and the installation and debugging of experimental equipment as well as the experimental design are completely in accordance with international standards. At the same time, the functional networks constructed by Pearson coefficient matrix and adjacency matrix were used to extract the features of EEG, and the extracted features were classified into electroencephalogram signals under complex motor tasks by the constructed Graph Convolutional Neural Network (GCNs-Net) model, which comprehensively evaluated the classification accuracy by electroencephalogram and behavioral indicators, and provided a feasible idea and method for the field of stability and accuracy of electroencephalogram identification in brain computer control.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-16
  • 最后修改日期:2023-09-02
  • 录用日期:2023-09-05
文章二维码