考虑颗粒团聚影响的聚合物基复合材料温度相关性拉伸断裂强度理论表征模型
作者:
作者单位:

1.重庆大学 航空航天学院;2.重庆科技学院 冶金与材料工程学院;3.重庆交通大学 航空学院

中图分类号:

O341?

基金项目:

国家自然科学基金资助项目(12172069,12202086)。


Theoretical characterization model of temperature-dependent tensile fracture strength of polymer matrix composites considering the effect of particle agglomeration
Author:
Affiliation:

1.College of Aerospace Engineering,Chongqing University;2.College of Metallurgical and Materials Engineering,Chongqing University of Science and Technology;3.School of Aeronautics,Chongqing Jiaotong University

Fund Project:

National Natural Science Foundation of China (12172069, 12202086).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • | | | |
  • 文章评论
    摘要:

    聚合物基复合材料在不同温度下的拉伸断裂强度一直是人们关注的焦点,颗粒作为一种常见增强相可以显著提高聚合物基复合材料的拉伸断裂强度。然而随着颗粒体积分数的增加,颗粒将会发生团聚现象,从而影响增强效果。针对颗粒增强聚合物基复合材料,通过计及颗粒团聚的影响,以及材料热物理性能随温度的演化,建立了一个考虑团聚影响的温度相关性拉伸断裂强度理论表征模型。模型得到了实验数据的良好验证。研究成果为定量表征不同颗粒含量、不同温度下复合材料的拉伸断裂强度提供了一种有效途径,加深了对不同温度下团聚现象对复合材料力学性能影响的认识。

    Abstract:

    The tensile fracture strength of polymer matrix composites at different temperatures have always been an important concern. As a common reinforcement phase, particles can significantly improve the tensile fracture strength of polymer matrix composites. However, with the increase of particle volume fraction, particles tend to agglomerate, which will affect the strengthening effect. For particle-reinforced polymer composites, considering the effects of particle agglomeration, as well as the evolution of the thermo-physical performance with temperature, a temperature-dependent analytical model for prediction of the tensile fracture strength of particle-reinforced polymer composites considering particle agglomeration was developed. The model predictions were in good agreement with the experimental data. The research results provide an effective way to quantitatively characterize the tensile fracture strength of composites with different particle content and temperature, and deepen the understanding of the influence of agglomeration phenomenon on the mechanical properties of composites at different temperatures.

    参考文献
    [1] Dai H L, Mei C, Rao Y N. A Novel Method for Prediction of Tensile Strength of Spherical Particle-Filled Polymer Composites With Strong Adhesion [J]. Polymer Engineering and Science, 2017, 57(2): 137-43.
    [2] Li Y, Li W, Deng Y, et al. Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content [J]. Materials Research Express, 2019, 6(1).
    [3] Li Y, Li W G, Lin X, et al. Theoretical modeling of the temperature dependent tensile strength for particulate-polymer composites [J]. Composites Science and Technology, 2019, 184.
    [4] Wang R Z, Li W G, Li D Y, et al. A new temperature dependent fracture strength model for the ZrB2-SiC composites [J]. Journal of the European Ceramic Society, 2015, 35(10): 2957-62.
    [5] Jayaseelan C, Padmanabhan P, Athijayamani A, et al. Effect of mechanical properties on banana macro particle reinforced epoxy composites [J]. Indian Journal of Engineering and Materials Sciences, 2020, 27(3): 643-8.
    [6] Jayaseelan C, Padmanabhan P, Athijayamani A, et al. Comparative Investigation of Mechanical Properties of Epoxy Composites Reinforced with Short Fibers, Macro Particles, and Micro Particles [J]. Bioresources, 2017, 12(2): 2864-71.
    [7] Miwa M, Horiba N. Effects of fiber length on tensile-strength of carbon glass-fiber hybrid composites [J]. Journal of Materials Science, 1994, 29(4): 973-7.
    [8] Alam M N, Choi J. Highly reinforced magneto-sensitive natural-rubber nanocomposite using iron oxide/multilayer graphene as hybrid filler [J]. Composites Communications, 2022, 32.
    [9] Zhu Z B, Lu K Y, Ling H, et al. Enhanced longitudinal compressive strength of CFRP composites with interlaminar CNT film prepreg from hot-melt pre-impregnation [J]. Composites Communications, 2023, 37.
    [10] Nicolais L, Nicodemo L J I J O P M. The Effect of Particles Shape on Tensile Properties of Glassy Thermoplastic Composites [J]. 1974, 3(3): 229-43.
    [11] Ran Y, Li Y D, Zeng J B. Dynamic crosslinking towards well-dispersed cellulose nanofiber reinforced epoxy vitrimer composites [J]. Composites Communications, 2022, 33.
    [12] Slipenyuk A, Kuprin V, Milman Y, et al. Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio [J]. Acta Materialia, 2006, 54(1): 157-66.
    [13] Bora M O. Evaluation of Volcanic Ash Concentration Effect on Mechanical Properties of Poly(Vinyl Chloride) Composites [J]. Acta Physica Polonica A, 2015, 127(4): 1004-6.
    [14] Agrawal S, Patidar D, Saxena N S. Investigation of temperature-dependent mechanical properties of CdS/PMMA nanocomposites [J]. Journal of Composite Materials, 2011, 45(24): 2507-14.
    [15] Agarwal S, Patidar D, Saxena N S. Study on glass transition temperature and mechanical properties of cadmium sulfide/polystyrene nanocomposites [J]. Polymer Engineering and Science, 2013, 53(6): 1223-9.
    [16] Agarwal S, Patidar D, Saxena N S. Effect of ZnS Nanofiller and Temperature on Mechanical Properties of Poly(methyl methacrylate) [J]. Journal of Applied Polymer Science, 2012, 123(4): 2431-8.
    [17] Boisvert J P, Persello J, Guyard A. Influence of the surface chemistry on the structural and mechanical properties of silica-polymer composites [J]. Journal of Polymer Science Part B-Polymer Physics, 2003, 41(23): 3127-38.
    [18] Meguid S A, Sun Y. On the tensile and shear strength of nano-reinforced composite interfaces [J]. Materials & Design, 2004, 25(4): 289-96.
    [19] Perez E, Lauke B. Calculation of debonding strength at the interface of particles with different shapes and matrix [J]. Composite Structures, 2017, 167: 262-70.
    [20] Hu A ZF., ZhangQ.. Surface Interfaces of Polymers and Their Composites, vol. 89 [J]. China Light Industry Press, 2001.
    [21] Deng Y, Li W, Wang R, et al. Temperature dependent first matrix cracking stress model for the unidirectional fiber reinforced ceramic composites [J]. Journal of the European Ceramic Society, 2017, 37(4): 1305-10.
    [22] Yang M, Li W, He Y, et al. Modeling the temperature dependent ultimate tensile strength of fiber/polymer composites considering fiber agglomeration [J]. 2021, 213(17): 108905.
    [23] Li Y, Li W G, Deng Y, et al. Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content [J]. Materials Research Express, 2019, 6(1).
    [24] Wang R, Li W, Ji B, et al. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model [J]. Journal of the Mechanics and Physics of Solids, 2017, 107: 365-78.
    [25] Li W, Zhang X, Kou H, et al. Theoretical prediction of temperature dependent yield strength for metallic materials [J]. International Journal of Mechanical Sciences, 2016, 105: 273-8.
    [26] Shin D K, Lee J J, Lyu M Y. A study on the impact failure mechanism of aluminum-PMMA interfacial crack [M]//HWANG W, HAN K S. Fracture and Strength of Solids, Pts 1 and 2. 2000: 259-64.
    [27] Rinde J A. Poissons ratio for rigid plastic foams [J]. Journal of Applied Polymer Science, 1970, 14(8): 1913-&.
    [28] Kusy R P, Katz M J. Generalized theory of the total fracture surface-energy for glassy organic polymers [J]. Polymer, 1978, 19(11): 1345-57.
    [29] Katsamanis F G, Delides C G. Fracture surface-energy measurements of pmma - a new experimental approach [J]. Journal of Physics D-Applied Physics, 1988, 21(1): 79-86.
    [30] Chand N, Vashishtha S R. Development, structure and strength properties of PP/PMMA/FA blends [J]. Bulletin of Materials Science, 2000, 23(2): 103-7.
    [31] https://en.wikipedia.org.
    [32] Mark J E. Physical Properties of Polymers Handbook, second ed. [M]. NewYork, 2007.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:201
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-04-21
  • 最后修改日期:2023-05-07
  • 录用日期:2023-05-11
文章二维码